SCSR1013 DIGITAL LOGIC # MODULE 8a: COUNTERS (INTRO & ASYNC) 2013/2014-1 **FACULTY OF COMPUTING** # Module Content - ASYNCHRONOUS COUNTER - 2 bit / 3 bit / 4 bit / BCD Decade - SYNCHRONOUS COUNTER - 2 bit / 3 bit /4 bit / BCD Decade - UP/DOWN COUNTER - CASCADED COUNTER - DESIGN THE SYNCHRONOUS COUNTER - COUNTER DECODING ### The objectives of this module are: - To distinguish the different between synchronous and asynchronous counters. - To illustrate the designing of counters. - To explain the application of counters. - To demonstrate the analysis of sequential circuits. - There is a variety of counters based on its construction. - Counter is type of sequential logic circuit. - In general, two categories of counters: Both categories can be differentiated by criterion: - Clock Trigger: Positive edged or Negative edged - Counts: Binary, Decade - Count Direction: Up, Down, or Up/Down In the previous lectures, the characteristic of S-R, D, J-K and T flip-flops were discussed. These flip-flops can be connected together to perform certain operations. In the following lectures, we will use these flip-flops to construct a variety of counters. In addition we will also learned the method for analysing the different types of counters. # Recap: Sequential Circuit - General sequential circuit that consists of a combinational logic section and a memory section → flip-flops. - Memory elements are devices capable of storing binary information. - Binary information stored at any given time defines the state of the sequential circuit. - The input and the present state of the memory element determines the output. - A sequential circuit is specified by a time sequence of inputs, outputs, and internal states. шш # **Types of Sequential Circuits** | Synchronous | Asynchronous | | | | |---|--|--|--|--| | Use clock inputs to synchronize the circuit operation. | Circuit operation is based on a message (signal) passing from one stage(e.g. Circuit) to another. | | | | | Sequential Logic Circuit Clock Pulse | Input Levels Sequential Circuit Output Pulses or Levels | | | | ## Introduction: # Counters # www.utm.my - A counter → Any sequential circuit that goes through a prescribed sequence of states upon the application of input pulses. - The sequence of states in a counter may follow a <u>binary count</u> or <u>any other sequence</u>. - The states changed by the input pulse; - the input pulses (count pulses) may be <u>clock pulses</u> or they may originate from an <u>external source</u>; may occur at prescribed intervals of time or at random. continue... # 100 000 001 011 011 010 #### Counters: - are generally made up of <u>flip-flops</u> and <u>logic gates</u>. - can retain an output state after the input condition which brought about that state has been removed. - classified as <u>sequential circuits</u>. - can have many more than two states - value of a state is expressed as a <u>multidigit binary number</u>, whose `1's and `0's are usually derived from the outputs of internal flip-flops that make up the counter. - The <u>states number</u> is limited only by the amount of electronic hardware that available. - Main types of flip-flops used: - J-K flip-flops, T flip-flops or D flip-flops. # **Uses of Counters** To count the number of times that a certain event takes place; the occurrence of event to be counted is represented by the input signal to the counter (see figure below). - To control a fixed sequence of actions in a digital system - e.g gate A must be open before gate B. - To generate timing signals devices used that can tell the time without having to be manually programmed There are many - To generate clocks of different frequencies. - By dividing the frequency, we can get a different clock frequencies from the same source # Characteristic of Counter - Counter can be described by the following characteristics: - Asynchronous or synchronous - 2 Counting sequence - 3. Modulus (MOD) - 4. Whether the counter repeat the counting sequence # Counters: ### 1. Asynchronous / Synchronous # Characteristics - •Whether the clock come from the same source or not - Synchronous all clock from the same source - Asynchronous clock for each flip-flop comes from a different source **Synchronous Counter** **Asynchronous Counter** ^{*} All J and K inputs assumed to be at logic 1. # Counters: # 2. Counting Sequence: Up | Down | Up-Down # Characteristics - •Up or Down unidirectional the count sequence only one way - •Up-Down bidirectional the direction of the count can be change during operation - Because of limited word length, the count sequence is limited. - For an *n*-bit counter, the range of the count is $[0, 2^n-1]$. - The count sequence usually repeats itself. - When counting up, the count sequence goes in this manner: 0, 1, 2, ... 2ⁿ-2, 2ⁿ-1, 0, 1, ... etc. - When counting down the count sequence goes in the same manner: $2^{n}-1$, $2^{n}-2$, ... 2, 1, 0, $2^{n}-1$, $2^{n}-2$, ... etc. | 3-bit Up Counter | 3-bit Down Counter | |------------------|--------------------| | 000 | 000 | | 001 | 111 | | 010 | 110 | | 011 | 101 | | 100 | 100 | | 101 | 011 | | 110 | 010 | | 111 | 001 | The complement of the count sequence counts in <u>reverse direction</u>: - If the counter output counts up, the complement output counts down. - If the counter output counts down, the complement output counts up. | 3-bit Up Counter | Complement of the | |------------------|-------------------| | | Count | | 000 | 111 | | 001 | 110 | | 010 | 101 | | 011 | 100 | | 100 | 011 | | 101 | 010 | | 110 | 001 | | 111 | 000 | ## Counters: #### www.utm.my ## Characteristics ## 3. Modulus (MOD): - Modulus (MOD): the number of state that the counter can have. - •e.g. MOD 4 (4 states with the following state 0,1,2,3), MOD 9 (0,1,2,...,8). - •the maximum count usually 2^N 1, where N is the number of the FF, or for the truncated sequence the max count will be < 2^N 1. - E.g. MOD 9 (0,1,2,...,8) is truncated sequence. #### 4. Repeat of Counting Sequence: - Whether the counter repeat the counting sequence: - Recycle if the counter goes back to the first count after the maximum count - Saturated the counter repeat the maximum count if count up or repeat the minimum if count down # Asynchronous Counters # Asynchronous Counter (AC) #### www.utm.my - An AC is one in which the flip-flop (ff) within the counter do not change states at exactly the same time because they do not have a common clock pulse. - The clock input of an AC is always connected only to the LSB ff - An AC also known as ripple counter message (signal) passing or propagation delay. - Comparison of asynchronous & synchronous. - See the different clock connection! continue... #### Asynchronous counter operation: - The external clock is connected to the clock input of the first flip-flop (FF0) only. - So, FF0 changes state at positive edge of each clock pulse, but FF1 changes only when triggered by the positive edge of the Q output of FF0. - Because of the inherent propagation delay through a flip-flop, the transition of the input clock pulse and a transition of the Q output of FFO can never occur at exactly the same time. - Therefore, the flip-flops cannot be triggered simultaneously, producing an Asynchronous operation This asynchronous counter is slow because the cascaded clocking scheme - The clock source ripples from stage-to-stage - The ripple effect is similar to that of a ripple carry adder circuit #### Generalization of an Asynchronous Counter continue... # **Summary of Asynchronous Counter:** - Every FF operates in Toggle mode (i.e. next output is a complement of the previous output). - To operate in toggle mod: for RS: R=Q' and S= Q, for JK: J =K=1, for D: D= Q', for T: T=1 - The design connection is the same, if we want more bits just add more flip-flops. - The difference in connection will be determine whether we want to count UP or DOWN and by using which type of flip-flop – positive edge or negative edge. # Count Up 2-bit AC ## www.utm.my - Positive edge - Assume that Q₀ initially LOW - Output of Q₀ is based on CLK - Output of Q1 is based on $\overline{Q0}$ continue... #### Notice: - 2. The clock of FF1 come from the complemented output of FF0, $Q_{\scriptscriptstyle 0}$ - 3. For FFO, every positive edge of the clock the output, Qo will toggle. - 4. For FF1, the clock depend on Q_0 and the output Q_1 will only toggle on the positive edge of Q_0 - The output of the circuit counter is read Q₁ Q₀ | Clock pulse 4: | | |--|--| | Recycles | | | The transition of the counter from its final state | | | → original state | | | CLOCK PULSE | Q _{1(MSB)} (Bit 2) | Q _{0 (LSB)} (Bit 1) | | |-------------|-----------------------------|------------------------------|--| | Initially | 0 | 0 | | | 1 | 0 | 1 | | | 2 | 1 | 0 | | | 3 | 1 | 1 | | | 4 | 0 | 0 | | MSB The 2-bit ripple counter circuit above has four different states, each one corresponding to a count value. Similarly, a counter with n flip-flops can have 2^n states. The number of states in a counter is known as its $\frac{\text{MOD (modulo)}}{\text{MOD (modulo)}}$. Thus a 2-bit counter is a mod-4 counter. LSB **Exercise 8a.1**: A 2-bit count up ripple counter is designed using J-K flip-flop with negative edge triggered clock. - a) Draw the connection of logic symbol. - b) Draw the waveform outputs for 5 clock cycles. - c) Construct a state table for the counter. - d) Draw the state diagram the the counter. # Solution 8a.1: a) Draw the connection of logic symbol. b) Draw the waveform outputs for 4 clock cycles. c) Construct a state table for the counter. | Clock Pulse | \mathbf{Q}_1 | Q_0 | |-------------|----------------|-------| | Initial | 0 | 0 | | 1 | 0 | 1 | | 2 | 1 | 0 | | 3 | 1 | 1 | d) Draw the state diagram the the counter. 4 - **Exercise 8a.2**: A 2-bit count down ripple counter is designed using J-K flip-flop with negative edge triggered clock. - a) Draw the connection of logic symbol. - b) Draw the waveform outputs for 4 clock cycles. - c) Construct a state table for the counter. - d) Draw the state diagram the the counter. # Solution 8a.2: a) Draw the connection of logic symbol. b) Draw the waveform outputs for 4 clock cycles. c) Construct a state table for the counter. 🤜 | 1 | |-----| | AR. | | 19 | | | | Clock Pulse | Q_1 | Q_0 | |-------------|-------|-------| | Initial | 0 | 0 | | 1 | 1 | 1 | | 2 | 1 | 0 | | 3 | 0 | 1 | | 4 | 0 | 0 | d) Draw the state diagram the the counter. # Count Up 3-bit AC The circuit connection is the same as 2 bit asynchronous counter, for a 3 bit counter just add another flip-flop. Positive edge Assume that Q₀ initially LOW #### The timing diagram of the 3 bit asynchronous counter. - The count change every positive edge of a clock. - The counting sequence is 0,1,2,3,4,5,6,7 and recycle back to 0 | CLOCK
PULSE | Q _{2 (MSB)} (Bit 3) | Q ₁ (Bit 2) | Q _{0 (LSB)} (Bit 1) | |----------------|------------------------------|------------------------|------------------------------| | Initially | 0 | 0 | 0 | | 1 | 0 | 0 | 1 | | 2 | 0 | 1 | 0 | | 3 | 0 | 1 | 1 | | 4 | 1 | 0 | 0 | | 5 | 1 | 0 | 1 | | 6 | 1 | 1 | 0 | | 7 | 1 | 1 | 1 | | 8 | 0 | 0 | 0 | Exercise 8a.3: A 3-bit count down ripple counter is designed using J-K flip-flop with negative edge triggered clock. - a) Draw the connection of logic symbol. - b) Draw the waveform outputs for 8 clock cycles. - c) Construct a state table for the counter. - d) Draw the state diagram the the counter. Solution 8a.3: a) Draw the connection of logic symbol. | CLK | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | |------------------|---|---|---|---|---|---|---|---|--| | | | | | | | | | | | | Q_0 | $\overline{Q_0}$ | Q_1 | $\overline{Q_1}$ | Q_2 | | | | | | | | | | # b) Draw the waveform outputs for 8 clock cycles. # c) Construct a state table for the counter. | Clock Pulse | Q_2 | Q_1 | Q_0 | |-------------|-------|-------|-------| | Initial | 0 | 0 | 0 | | 1 | 1 | 1 | 1 | | 2 | 1 | 1 | 0 | | 3 | 1 | 0 | 1 | | 4 | 1 | 0 | 0 | | 5 | 0 | 1 | 1 | | 6 | 0 | 1 | 0 | | 7 | 0 | 0 | 1 | | 8 | 0 | 0 | 0 | d) Draw the state diagram the counter # Count Up 4-bit AC ### www.utm.my - The counter using a negative edge JK FF. - But still a count up counter because clock is connected to Q. Exercise 8a.4: A 4-bit count down ripple counter is designed using J-K flip-flop with positive edge triggered clock. - a) Draw the connection of logic symbol. - b) Draw the waveform outputs for 8 clock cycles. - c) Construct a state table for the counter. - d) Draw the state diagram the the counter. # Asynchronous Decade Counter #### www.utm.my - Maximum number of possible state (max. modulus) of a counter is 2ⁿ. - However, it can be designed less than 2ⁿ → ## **Truncated Sequence** - One common modulus for counters with truncated sequences is ten → decade counter - It will force the counter to cycle before going through all its normal states. # Asynchronously Clocked Modulus-10 Decode ten (1010₂) with a NAND gate and connect the output to the CLEAR inputs of all flip-flops. Figure: Count Up 4-bit Asynchronous Decade Counter Notice that there is a **glitch** in Q_1 . The reason of this glitch is that Q_1 must first go HIGH before the count 10 can be decoded. Several nanoseconds after the decoding gate goes LOW. # Asynchronously Clocked Modulus-12 Decode twelve (1100₂) with a NAND gate and connect the output to the CLEAR inputs of all flip-flops. Advantage and Disadvantage of AC - Advantage: - The design step is simple (easy) - Disadvantage: - Propagated delay accumulate as in ripple binary adder which may cause a missing counting state - Especially at high speed (frequency) operation, therefore this kind of counter cannot operates at high frequency. - The maximum operating frequency $f_{\text{max}} = \frac{1}{Nt_{pd}}$ where N is the number of flip-flop an t_{pd} is the propagation delay of the flip-flop ### Effect of propagation delay on AC Assume 3 bits counter using a flip-flop with a propagation delay of 50ns. Case 1: operating at low frequency of 1 MHz For each stage there is a 50 ns delay and it accumulates up to 150ns at the 3rd stage. The accumulated delay is still lower than the period of the signal which is 1000ns, therefore there is no effect to the counting sequence. Low frequency continue... # High frequency Case 2: operating at a higher frequency of 10 MHz The clock period is only 100ns. For a 3 stage flip-flop the accumulated delay is the same as before which is 150ns. But, now the accumulated delay is more than the clock period, therefore there is a missing count, 100 doesn't exist! Exercise 8a.5: If a propagation delay of a mod 32 asynchronous recycle UP counter using JK FF is 40ns, what is the maximum operating frequency? Solution: Number of flip-flops = $$\left\lceil \frac{\log MOD}{\log 2} \right\rceil$$ $f_{max} = \frac{1}{Nt_{pd}}$ $= \frac{\log 32}{\log 2}$ $= \frac{1}{5(40 \text{ns})}$ $= \frac{\log 2^5}{\log 2}$ $= \frac{1}{5(40 \text{x} 10^{-9} \text{s})}$ $= \frac{5 \log 2}{\log 2}$ $f = 5 \text{ MHz}$