SCSR1013 DIGITAL LOGIC **FACULTY OF COMPUTING** #### **INTRODUCTION TO LATCH & FLIP-FLOP** #### **LATCH** - S-R Latch - Gated S-R Latch - Gated D Latch #### **FLIP-FLOPS** - Edge-Triggered D Flip-Flop - S-R Flip-Flop - J-K Flip-Flop - T Flip-Flop ## Introduction to Latch & Flip-Flop шш # Sequential Vs Combinational Logic Circuit #### **Combinational Logic Circuit:** - The output depend on the input - It has no memory element - Therefore it cannot memorize the previous output #### Sequential Logic Circuit: - It has memory element - The output depend on the input, as well as the previous output from the feedback elements Sequential Logic circuits can be divided into 3 main categories: - Clock Driven Synchronous Circuits that are synchronized to a specific clock signal. - 2. Event Driven Asynchronous Circuits that react or change state when an external event occurs. - 3. Pulse Driven Which is a Combination of Synchronous and Asynchronous. Sequential logic circuits that return back to their original state once reset, i.e. circuits with loops or feedback paths are said to be "Cyclic" in nature. - Latch is a type of temporary storage device - It has two stable states (bi-stable). - Latch is level sensitive, or level-triggered. - are dependent on the voltage level applied, not on any signal transition. - Type of Latch : - i) S-R - ii) Gated S-R - iii) Gated D LOW HIGH #### INFO: A **bi-stable** state is one with *two-stable* output states. S → Set R → Reset D → Data - Flip-flop (FF) are synchronous bi-stable storage devices capable of storing one bit, where the output state only changes at a specified point on a triggering input called the Clock (C). - So FF are edge-triggered, means that the output changes are synchronized with the Clock signal. - This may either be a LOW-to-HIGH (rising edge) or a HIGH-to-LOW (falling edge) transition. - Type of Flip-Flop: - i) D - ii) S-R - iii) J-K - iv) T #### INFO: Rising edge = positive edge Falling edge = negative edge ☐ Two control inputs #### Difference: ## Latch vs Flip-Flop #### www.utm.my ### Latches - i) S-R - ii) Gated S-R - iii) Gated D - The output of each gate is connected to an input of the opposite data. - This produces a regenerative feedback. (a) Active-HIGH input S-R latch (b) Active-LOW input S-R latch ## S-R Latch: Logic symbol #### www.utm.my (a) Active-HIGH input S-R latch #### Circuit (a) Active-HIGH input S-R latch: - use NOR gate - Input R and S - Output Q and Q' (b) Active-LOW input S-R latch #### Circuit (b) Active-LOW input S'-R' latch: - use NAND gate - Input S' and R' - Output Q and Q' | Activ | /e-H | IGF | |-------|------|-----| | | | | | INP | INPUTS | | PUTS | COMMENTS | |-----|--------|----|----------------|---| | S | R | Q | \overline{Q} | COMMENTS | | 0 | 0 | NC | NC | No change. Latch remains in present state | | 0 | 1 | 0 | 1 | Latch RESET | | 1 | 0 | 1 | 0 | Latch SET | | 1 | 1 | 0 | 0 | Invalid condition | | INP | INPUTS | | UTPUTS | | |----------------|----------------|----|----------------|---| | \overline{S} | \overline{R} | Q | \overline{Q} | COMMENTS | | 0 | 0 | 1 | 1 | Invalid condition | | 0 | 1 | 1 | 0 | Latch SET | | 1 | 0 | 0 | 1 | Latch RESET | | 1 | 1 | NC | NC | No change. Latch remains in present state | **Active-LOW** #### **Explanation:** - The Q and not-Q outputs are supposed to be in opposite states. - Q=1 and not-Q=0 is defined as Set (by making S=1 and R=0) - Q=0 and not-Q=1 is conversely defined as Reset (by making S=0 and R=1) - When S and R are both equal to 0, the multivibrator's outputs "Not Change" in their prior states. - If Q and not-Q happen to be forced to the same state (both 0 or both 1), that state is referred to as *invalid*. #### Example: S-R Latch (Active HIGH) Logic symbol continue... ## Explaination: Logic symbol | Location | S | R | Q | State | |----------|---|---|---|-------| | (a) | 1 | 0 | 1 | SET | | (b) | 0 | 0 | 1 | HOLD | | (c) | 0 | 1 | 0 | RESET | | (d) | 0 | 0 | 0 | HOLD | | (e) | 0 | 1 | 0 | RESET | | (f) | 0 | 0 | 0 | HOLD | | (g) | 1 | 0 | 1 | SET | Exercise 7.1: If the S and R waveform in (a) are applied to the inputs of latch (active-LOW), determine the waveform that will be observed on the Q output in (b). Assume that Q is initially LOW. Logic symbol #### Solution: Logic symbol #### Solution: - Is a gated latch requires an enable input (EN). - The S and R inputs control the state to which the latch will go when a HIGH level is applied to the EN input. - The latch will not change until EN is HIGH, but as long as it remains HIGH, the output is controlled by the state of the S and R input. - The invalid state occurs when both S and R are simultaneously HIGH. EN = 1, Latch is On EN = 0, Latch is Off ## **Gated S-R Latch: Circuit and Symbol** $\mathbf{w}\mathbf{w}\mathbf{w}$ - For Gated S-R, introduce/gate G1 and G2 - behaves as a gate that control whether to allow S to Y and R to Z or to make Y = Z = 1 $$Y = \overline{(S \cdot EN)}$$ $$Z = \overline{(R \cdot EN)}$$ - If EN = 0, Y = 1 and Z=1 - If EN=1, Y =S' and Z = R' this will change an active low SR to an active HIGH SR flip-flop ## Gated S-R Latch: Truth Table www.utm.my | EN | S | R | Output | |----|---------|---------|-------------| | 0 | 0/1 (X) | 0/1 (X) | No Change | | 1 | 0 | 0 | No Change | | 1 | 0 | 1 | Q=0 (RESET) | | 1 | 1 | 0 | Q=1 (SET) | | 1 | 1 | 1 | Invalid | Logic symbol **Example:** Gated S-R Latch. Find the waveform for Q. Assume that Q is initially LOW. #### Solution: Logic symbol Example: Gated S-R Latch. Find the waveform for Q. Assume that Q is #### Solution: Exercise 7.2: Referring to logic diagram above, fill in the table. Assume initially Q = 0 and Q' = 1 | EN | S | R | Υ | Z | Q | |----|---|---|---|---|---| | 0 | 0 | 0 | | | | | 0 | 0 | 1 | | | | | 0 | 1 | 0 | | | | | 0 | 1 | 1 | | | | | 1 | 0 | 0 | | | | | 1 | 0 | 1 | | | | | 1 | 1 | 0 | | | | | 1 | 1 | 1 | | | | **Solution:** S-R Latch (Active LOW) Referring to logic diagram above, fill in the table. Assume initially Q = 0 and Q' = 1 | | | | S | R | | |----|---|---|---|---|---| | EN | S | R | Υ | Z | Q | | 0 | 0 | 0 | 1 | 1 | 0 | | 0 | 0 | 1 | 1 | 1 | 0 | | 0 | 1 | 0 | 1 | 1 | 0 | | 0 | 1 | 1 | 1 | 1 | 0 | | 1 | 0 | 0 | 1 | 1 | 0 | | 1 | 0 | 1 | 1 | 0 | 0 | | 1 | 1 | 0 | 0 | 1 | 1 | | 1 | 1 | 1 | 0 | 0 | 1 | continue... #### Double check the answer: Referring to logic diagram above, fill in the table. Assume initially Q = 0 and Q' = 1 | EN | S | R | Υ | Z | Q | <u>STATE</u> | |----|---|---|---|---|---|--------------| | 0 | 0 | 0 | 1 | 1 | 0 | HOLD | | 0 | 0 | 1 | 1 | 1 | 0 | HOLD | | 0 | 1 | 0 | 1 | 1 | 0 | HOLD | | 0 | 1 | 1 | 1 | 1 | 0 | HOLD | | 1 | 0 | 0 | 1 | 1 | 0 | HOLD | | 1 | 0 | 1 | 1 | 0 | 0 | 0 (RESET) | | 1 | 1 | 0 | 0 | 1 | 1 | 1 (SET) | | 1 | 1 | 1 | 0 | 0 | 1 | INVALID | #### Gated D Latch: www.utm.my ## Logic diagram & logic symbol (b) Logic symbol #### Gated D Latch ## Gated D Latch: Truth Table | EN | D | Output | |----|---|-----------| | 0 | 0 | No Change | | 0 | 1 | No Change | | 1 | 0 | Q = 0 | | 1 | 1 | Q = 1 | #### **INFO**: EN = 1, Latch is On EN = 0, Latch is Off The purpose of the inverter is to make sure that R is the complement of S and R will never be the same as S. So that, we have only two condition at the input of SR. Condition 1: D = 0, therefore S = 0, R = 1 which make Q = 0 Condition 2: D = 1, therefore S = 1, R = 0 which make Q = 1 Just like gated SR, when EN=0, the output does not change. BUT, if EN=1, the output will depend on the value of input D. So, we can conclude that Q=D when EN=1. Example: Gated D Latch. Find the waveform for Q. Assume that Q is initially LOW. #### Solution: | EN | D | Output | |----|---|-----------| | 0 | 0 | No Change | | 0 | 1 | No Change | | 1 | 0 | Q = 0 | | 1 | 1 | Q = 1 | Logic symbol ## Flip-Flops i) Edge-Triggered Dii) S-Riii) J-Kiv) T (Toggle) ## Edge-Triggered FF 36 www.utm.m #### Flip-flop is an important device in a sequential circuit Figure: Edge-Triggered FF logic symbol The different between Gated Latch (EN) and Flip-Flop (CLK): - Gated Latch is activated by using Level-triggered EN (i.e '0' or '1') - FF is activated by using edge-triggered CLK i.e 'transition from '0 to 1' or '1 to 0') (a) S = 1, R = 0 flip-flop SETS on positive clock edge. (If already SET, it remains SET.) (b) S = 0, R = 1 flip-flop RESETS on positive clock edge. (If already RESET, it remains RESET.) (c) S = 0, R = 0 flip-flop does not change. (If SET, it remains SET; if RESET, it remains RESET.) | S | R | CLK | Output | | Comments | |---|---|----------|--------|------------------|-----------| | | | | Q | Q | | | 0 | 0 | Ť | Q_0 | $\overline{Q_0}$ | No Change | | 0 | 1 | Ť | 0 | 1 | RESET | | 1 | 0 | † | 1 | 0 | SET | | 1 | 1 | Ť | ? | ? | Invalid | ## TRUTH TABLE to HIGH Q₀= output level prior to clock transition Example: S-R Flip-Flop. Find the waveform for Q and Q. Assume that the positive edge-triggered flip-flop is initially RESET. - $Q = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ - $\bar{\varrho}^{-1}$ - (b) 0 # **Solution:** Logic symbol | Clock
Pulse | S | R | Q | |----------------|------|------|-----------------| | 1 | LOW | LOW | Does not change | | 2 | LOW | HIGH | LOW (RESET) | | 3 | HIGH | LOW | HIGH (SET) | | 4 | LOW | HIGH | LOW (RESET) | | 5 | HIGH | LOW | HIGH (SET) | | 6 | HIGH | LOW | Stay HIGH | Once Q is determined, Q' is easily found since it is simply the complement of Q. Logic symbol # D □ Data or Delay - D FF is useful when a single data bit (1 or 0) is to be stored. - The addition of an inverter to an S-R FF creates basic D FF where a positive edge-triggered type is shown. | INPUTS | | OUTPUTS | | COMMENTS | |--------|----------|---------|---|-----------------| | D | CLK | Q Q | | | | 1 | ↑ | 1 | 0 | SET (store a 1) | | 0 | ↑ | 0 | 1 | RESET (store 0) | Logic symbol (for positive edge-triggered) Remember, Q follows D at the active or triggering clock edge. - The JK FF is versatile and is a widely used type of FF. - The difference between J-K and S-R: J-K has no invalid state as S-R. Logic Symbol | J | K | CLK | Output | | Comments | |---|---|-------------|--------|------------------|-----------| | | | | Q | Q | | | 0 | 0 | 1/↓ | Q_0 | \overline{Q}_0 | No Change | | 0 | 1 | † /↓ | 0 | 1 | RESET | | 1 | 0 | 1/↓ | 1 | 0 | SET | | 1 | 1 | 1/↓ | Q_0 | Q_0 | Toggle | ## TRUTH TABLE = clock transition LOW to HIGH Q₀= output level prior to clock transition Logic symbol (b) Example: J-K Flip-Flop. Find the waveform for Q. Assume that Q is initially LOW. Positive or negativ e trigger Logic symbol Positive trigger ed ## Solution: Example: J-K Flip-Flop. Find the waveform for Q. Assume that Q is initially LOW. Logic symbol ## Solution: negative trigger ed - Also called as toggle flip flop. - Frequently used in building counters Logic Symbol | Т | CLK | Output | | Comments | |---|-------------|--------|---|----------| | | 1 /↓ | Q | Q | | | 0 | 1 /↓ | 0 | 0 | HOLD | | 0 | † /↓ | 1 | 1 | HOLD _ | | 1 | 1/↓ | 0 | 1 | TOGGLE | | 1 | 1/↓ | 1 | 0 | TOGGLE | Logic symbol Timing Diagram for T Flip-Flop (Negativ e-Edge Trigger) шш # FF Asynchronous Input - Synchronous → inputs transferred on the triggering edge of the clock - Asynchronous → inputs effect FF state independent of the clock - Normally labeled (depends on the manufacturer) Preset \overline{PRE} or direct SET Clear \overline{CLR} or direct RESET | PRE | CLR | FF | MODE | |-----|-----|-------|--------------| | 0 | 1 | SET | Asynchronous | | 1 | 0 | RESET | Asynchronous | | 1 | 1 | JK | Synchronous | Flip-flop input priority: | Priority | FF Input | | |----------|---------------------------------|----------------------| | Highest | $\overline{PRE},\overline{CLR}$ | (Asynchronous input) | | Medium | Clock | | | Lowest | S-R, J-K, D, T | (Synchronous input) | - Flip-flop asynchronous input has the highest priority. - Which means that if the asynchronous input active, the output will immediately change regardless the value of synchronous input or clock. - There are two types of asynchronous input: - preset , PRE to set initial value of 1 to the output - clear, CLR to reset the output to 0 Note: When J=K=1, it works as T flip-flop HIGH PRE J C K CLR Example: J-K Flip-Flop. Find the waveform for Q. Assume that Q is initially LOW. | PRE | CLR | FF | MODE | |-----|-----|-------|--------------| | 0 | 1 | SET | Asynchronous | | 1 | 0 | RESET | Asynchronous | | 1 | 1 | JK | Synchronous | | clk
pulse | PRE | CLR | J | K | FF | Comment | |--------------|-----|-----|---|---|--------|-----------------------| | 1,2,3 | 0 | 1 | 1 | 1 | SET | JK inputs - dont care | | 4,5,6,
7 | 1 | 1 | 1 | 1 | Toggle | Synchronous mode. | | 8,9 | 1 | 0 | 1 | 1 | RESET | JK inputs - dont care | Exercise 7.3: *PRE* and *CLR*Find the waveform for Q. Assume that Q is initially LOW. Positive or negativ e trigger ed? Q **Solution:** **Positive** triggered # Note: When J=K=1, it works as T flip-flop Exercise 7.4: PRE and \overline{CLR} Find the waveform for Q. Assume that Q is initially HIGH. Positive or negativ trigger PIN 5 (1*Q*) Solution: Note: When J=K=1, it works as T flip-flop Negative trigger ed Input Flip-flop, Q # Extra notes: # Master Slave Flip Flops (JK Example) - This type of Flip-flop is already obsolete, the mention here is for the sake of completeness - You must know it exist, where you might find in the old circuit board. There are 2 sections called as: Master section - a) External JK input, b) A gated latch Slave section - a) Inputs = outputs of Master, b) Inverted clock pulse #### Master-slave flip-flop: - Another class of flip-flop is the pulse-triggered or master-slave. These flip-flops are constructed from two separate flip-flops. The term pulse-triggered means that data are entered into the flip-flop on the leading edge of the clock pulse, but the output does not reflect the input state until the trailing edge of the clock pulse. This is due to the master flip-flop being rising edge triggered and the slave flip-flop being falling edge triggered as illustrated in the above slide. - A type of clocked flip-flop consisting of master and slave elements that are clocked on complementary transitions of the clock signal. - Data is only transferred from the master to the slave, and hence to the output, after the masterdevice outputs have stabilized. - This eliminates the possibility of ambiguous outputs, which can occur in single-element flip-flops as a result of propagation delays of the individual logic gates driving the flip-flops. The logic symbol for the master-slave flip-flop only indicates the initial inputs to the master and the outputs from the slave Logic symbol for J-K master-slave flip-flop Truth table for J-K master-slave flip-flop J-K master slave flip-flop have the same characteristic with the edge triggered J-K, the only difference is how it was triggered and when the input evaluated and the effect appear at the output | J | к | С | Q | ē | Operation | |---|---|-------|----------------|----------------|---------------------| | 0 | 0 | Pulse | Q ₀ | <u>Q</u> 0 | Hold (no
change) | | 0 | 1 | Pulse | 0 | 1 | Reset | | 1 | 0 | Pulse | 1 | 0 | Set | | 1 | 1 | Pulse | <u>e</u> , | Q ₀ | Toggle |