mmmmmmmmmmmmmmm

7 7z Topic Outline

» 1 - Getting the Address of a Variable

2 - Pointer Variables

3 - The Relationship Between Arrays and Pointers
4 - Pointer Arithmetic

5 - Initializing Pointers

6 - Comparing Pointers

7 - Pointers as Function Parameters

8 - Dynamic Memory Allocation

9 - Returning Pointers from Functions

mmmmmmmmmmmmmmm

07: POINTERS

Programming Technique |
(SCSJ 1013)

 @UTM @UTM

mmmmmmmmmmmmmmmmmmmmmmmmmmmmm

7 7~ Addresses and Pointers

“Address:

¢ A uniquely defined memory location which is
assigned to a variable.

¢ Example - a positive integer value

<An analogy with post box>

Post office box number Individual name Contents

1- Getting the Address of a Variable 78 John Ruiz Catalog

Memory Address Identifier Contents
66572 X 105

Notation for Memory Snapshot

Memory Address Identifier Contents
66572 X 105
Memory Address 66572

N\

Identifier Contents

Example 1.1

#include <iostream>
using namespace std;

int main ()
{
int x=25;
cout<<"The address of x 1s= "<<&x<<endl;
"< x<<endl;

cout<<"The wvalue in x 1is

105

Getting the Address of a Variable

& Each variable in program is stored at a unique address

Use address operator to get address of a variable:

int num = -99;

cout << num; // prints address

// 1n hexadecimal

Result of Example 1.1

X |25

The address of x is 0x8f05

The value in x 1s 25;

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

7 Exercise 1 7z

+ Type & execute the following program
» Check with your friend the address displayed.

#include <iostream>
using namespace std;

int main ()

{ [) []
int x=25; 2 - Pointer Variables

cout<<"The address of x is= "<<K&x<<endl;
cout<<"The wvalue in x 1s "<< x<<endl;

7 Pointer Variables 7~ Pointer Variables (cont.)

» Pointer variable : Often just called a pointer, it's a
variable that holds an address

* Definition:
int *intptr;
« Because a pointer variable holds the address of another * Read as:
piece of data, it “points™ to the data “intptr can hold the address of an int

« Pointer variables are yet another way using a memory « Spacing in definition does not matter:
address to work with a piece of data. int * intptr; // same as above

int* intptr; // same as above

»”

« This means you are responsible for finding the address
you want to store in the pointer and correctly using it.

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

7~ Pointer Variables (cont.) 7~ Pointer Variables (cont.)

o iani i i . or

As&ginlng an address to a pointer variable: int a, b, *ptr: inta, b, *ptr = &a;

int *intptr; ptr = &a;

intptr = #

ptr
« Memory layout: .. intptr \
25 " 0x4a00
address of num: 0x4a00 a | 0 b| O

7 Example 2.1 7~ TheIndirection Operator

Program 9-2

» The indirection operator (*) dereferences

/¢ This program stores the address of a variable in a pointer.

¢include <iostreams> a p0|nter
using namespace std;
int main() * |t allows you to access the item that the
{ . .
int x = 25; Y int wvariable pOInter pOIntS to
int #*ptr; /¢ Pointer wvariable, can peoint to an int
ptr = &x; /¢ Store the address of x in ptr) — .
cout =< "The wvalue in x®x is " << x << endl; lnt X 25 ’
cout << "The address of ®x is " << ptr << endl; ' * 2 — .
return 0; int *intptr = &x;

} cout << *intpzf << endl;

Program Output
The walue in x is 25

The address of x is 0x7e00 This printS 25.

eu / OUIM
7~ Pointer Variables (cont.) 7~ Pointer Variables (cont.)

ptr\
al 5 bl o

inta=5, b=29, ptr int a =5, b =09,

*ptr = &a; ale bl s *ptr = &a;

1L
@ *ptr = b; pt;\g r

b = *ptr;

als| bls

*ptr = b: the value pointed to by ptr is assigned the
b=*ptr b is assigned the value pointed to by ptr value in b.

innovative e entrepreneurial e global www.utm.my

UTM UTM
@/ @/ Exercise 2
7 Example 2.2 &

Program 9-3 « Give memory snapshots after each of

¥inciude <iosiresms these sets of statements are executed.

using namespace std;

innovative e entrepreneurial e global www.utm.my

?nt main() 1 int a=1, b=2, *ptr;
int = = 25;: S/ int wariable LTSS,
int *ptr: f/ Polinter wvariable, can point to an int ptr = &b;
. : 3 = = * — -

ptr = &x; S Store the address of ®x in ptr 2 int a=1l, b=2, ptx &b;
/4 Use both ® and ptr to display the walue in x=x. a = *ptr;
cout =< "Here is the walue in x, printed twice:'\n";
cout =< x =< endl: /4 Displays the contents of x 3. int a=1, b=2, c=5, *ptr=&c;
cout =< *ptr =< endl; A4 Displays the contents of x

; . : . . = *
A4 Assign 100 to the locaticon pointed to by ptr. This b ptxr
/4 will actually assign 100 to x. *ptr = a;
*ptr = 100; c

k ’ 4. int a=1, b=2, c=5, *ptr;
/4 Use both = and ptr to display the walue in x. .
cout =< "Once again, here is the wvalue in x:\n"; ptr = &c:;
cout << X =< endl; f4 Displays the contents of x c = b:
cout =< *ptr << endl; /4 Displays the contents of x 7
return 0; a = *ptr

¥

innovative e entrepreneurial e global www.utm.my innovative e entrepreneurial e global www.utm.my

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ 3 Exercise 3 @UTM/ Something like Pointers:
¢ Arrays

« We have already worked with something
similar to pointers, when we learned to
pass arrays as arguments to functions.

» Refer to Exercise 10.14 no 3 (b) pg. 297.
» Solve the problem.

» For example, suppose we use this
statement to pass the array numbers to
the showValues function:

showValues (numbers, SIZE);

@UTM/ Something like Pointers: @UTM/ Something like Pointers:
/ Arrays ¢ Reference Variables
The values parameter, in the » We have also worked with something like pointers
itk showValues function, points to the when we learned to use reference variables.
=" 12]%[*[®|] numbers array. Suppose we have this function:

void getOrder (int &donuts)

showValues (numbers, SIZE); {
| — cout << "How many doughnuts do you want? ";
Ao L ® | cin >> donuts;
C++ automatically l }
stores the address void showValues(int values[], int size) ° And we Ca” |t Wlth thlS Code:
. { - -

of numbers in the for (int count = 0; count < size; count++) int jellyDonuts;
values parametel’_ cout << values[count] << endl;

getOrder (jellyDonuts) ;

@UTM/ Something like Pointers: @UTM
/ Reference Variables /

jellyDonuts variable

The donuts parameter, in the
getOrder function, points to the
jellyDonuts variable.

getOrder(jellyDonuts);
|

address
[

C tomaticall . .
st;:eiuthoemaad S:raeSyS voia getorer (int: sdonuta) 3 - The Relationship Between
of jellyDonuts cgut << "How many doughnuts do you want? "; Arrays and Pointers
in the donuts g S== SONUER
parameter.
vtM /S S vtM /S S
% The Relationship Between % The Relationship Between
Arrays and Pointers Arrays and Pointers
« Array name is starting address of array int x[5], *ptr_x;
int vals[] = {4, 7, 11}; ptr_x = &x[0];
ptr_x
4 7 11 \
. Memory 20 2 2 2|2
starting address of vals: 0x4a00 allocation

x[0] x[1] x[2] x[3] x[4]

cout << vals; // displays 0x4a00

The memory location for x[1] is immediately
cout << wvals[0]; // displays 4 follow the memory location of x[0].

@UTM/ The Relationship Between
, Arrays and Pointers (cont.)

« Array name can be used as a pointer
constant:
int vals[] = {4, 7, 11};

cout << *vals; // displays 4

» Pointer can be used as an array name:
int *valptr = vals;
cout << valptr[l]; // displays 7

uuuuuuuuuuuuuuuuuuu

Example 3.1

Program 2-5

// This program shows an array name being dereferenced with the *
// operator.

¢include <iostream=

using namespace std;

int main()

{
short numbers([] = {10, 20, 20, 40, 50};

cout << "The first element of the array is "
cout =< *numbers << endl;
return 0;

b

Program Output
The first element of the array is 10

Exercise 4

» Refer to previous slide in Program 9-5.

* Print the third element in the array using
pointer number.

4 - Pointers Arithmetic

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

7 Pointers Arithmetic 7 Example 4.1

const int SIZE = 8;
. . . int set[SIZE] = {5, 10, 15, 20, 25, 30, 35, 40};
» Operations on pointer variables: int *mumPtr; // Pointer
int count; /4 Counter wvariable for loops
Operat|0n Example /Y Make numPtr point to the set arravy.
int vals[]={4,7,11}; numPtr = set;
int *valptr = vals; // Use the pointer +to display the array contents.
4 __ Valptr+%ﬁ // pOiDtS at 7 cout =< "The numbers in set are:\n":
! ! . for (count = 0; count = SIEE; count+-+)
valptr--; // now points at 4 I
+, - (pointer and int) cout << *(valptr + 2); // 11 cout == 'numPtr == 7 7
I numBPtr++; I
+=, —-= (pointer valptr = vals; // points at 4 !
and int) valptr += 2; // points at 11 // Display the array contents in reverse order.
_ . . _ . . cout =< "YnThe numlbers in set backward are:\n";
(pointer from pointer) cout << valptllf val; // difference for (count — 0; count < SIZE; countii)
// (number of ints) between valptr 1
// and val [numPer——; |
Cout == FOoUmbPtr == T

S Pointers in Expressions p— Pointers in Expressions

Given:
int vals[]={4,7,11}, *valptr; depends on the machine used
valptr = vals; » depends on the variable type

* For examples,

. + ? .
What is valptr 1 — Short integers (2 byte)

It means (address in valptr) + (1 * size

_ * Beginning . ptr = 45530
of an int) - After ptr++ . ptr = 45532
cout << *(valptr+l); //displays 7 — Floating point values (4 byte)
cout << *(valptr+2); //displays 11 - Beginning : ptr = 50200

 After ptr++ . ptr = 50204

Must use () as shown in the expressions

oy

« Array elements can be accessed in many ways:

Array Access

oy

Array access method

Example

array name and []

vals([2] = 17;

pointer to array and []

valptr[2] = 17;

Array Access

const int NUM_COINS = 5;

double coinS[NUM_COINS] = {0.05, 0.1, 0.25, 0.5, 1.0}
double *doublePtr; S Pointer to a double

int count; S Array index

/7 Assign the address of the coins array to doublePtr.
doublePtr = coins;

// Display the contents of the coins array. Use subscripts
/# with the pointer!

cout << "Here are the walues in the coins array:\n";

for (count = 0: count < NUM COINS: count++)

Icout =< doublePtr|[count] =< " "; I
* = .
array name and (vals + 2) 17; /¢ Display the contents of the array again, but this time
SUbSCfipt arithmetic // use pointer notation with the array name!
- cout << "“nAnd here they are again:'n";
pOIﬂter to array and *(valptr + 2) = 17; for (count = 0; count < HUM COINS: count++)
H P H cout =< *{coins + count) == " ";
subscript arithmetic colm e |

www.utm.my

innovative e entrepreneurial e global

o 7

innovative e entrepreneurial e global www.utm.my

o /

» Refer to Exercise 10.14 No. 4(b) in pg. 298.
» Solve the problem.

Exercise 5

5 - Initializing Pointers

innovative e entrepreneurial e global www.utm.my innovative e entrepreneurial e global www.utm.my

uuuuuuuuuuuuuuuu

p— Initializing Pointers P Exercise 6

For each of the following problems, give a memory snapshot that includes

i Can |n|t|al|ze at deflnltIOH time: both variables and pointer references after the problem statements are exe-
) cuted. Include as much information as possible. Use question marks to indi-
int num, *numptr = # cate memory locations that have not been initialized.
int val [3] 7 *Valptr = Val; 1. double x=15.6, y=10.2, *ptr l=&y, *ptr_ 2=&x;

. .) 1 = % 2 ;
« Cannot mix data types: Ptr_1 = *ptr 2 + x
2: int w=10, x=2, *ptr 2=&x;
double cost; Hstilag e
k4
: * — . k 35 int x[5]={2,4,6,8,3};
lnt ptr &COSt’ // won t wor int *ptr_ 1=NULL, *ptr 2=NULL, *ptr_ 3=NULL;
« Can test for an invalid address for ptr e Lt E T
. ptr 1 = ptr 2 = ptr 3 + 2;
Wlth. 4. int w[4], *first ptr=NULL, *last_ ptr=NULL;

lf (!ptr) o o o first ptr = ?w[O];
last_ptr = first_ptr + 3;

7 . Comparing Pointers

* Relational operators (<, >=, etc.) can be
used to compare addresses in pointers

« Comparing addresses in pointers is not
the same as comparing contents pointed
at by pointers:

if (ptrl == ptr2) // compares
// addresses

6 - Comparing Pointers

if (*ptrl == *ptr2) // compares
// contents

uuuuuuuuuuuuuuuuuu

/-»/ Exercise 7 /_g,

#include <iostream>
using namespace std;

int main ()

{

int value=7;
int *ptrl = &value; Pointers are Equal
int *ptr2 = &value;

if (ptrl==ptr2) {
cout << "Pointers are Equal”; 7 - Pointers as Function Parameters
lelse(
cout << "Pointers are Not Equal”;}
return 0;

innovative e entrepreneurial e global innovative e entrepreneurial e global

7 Pointers as Function Parameters p— Example 7.1
« Apointer can be a parameter void swap(int *x, int *y)
« Implements call-by-address references { int temp;

« allows to modify the values by statements within temp = *x;
a called function xx = *y;
« _Requires: o — ter;l]
1) asterisk * on parameter in prototype and heading Yy = P/
void getNum(int *ptr); // ptr is pointer to int }
2) asterisk * in body to dereference the pointer
cin >> *ptr; . int numl = 2, num2 = -3;
3) address as argument to the function
getNum(&num) ; // pass address of num to getNum swap (&numl, &num2);

innovative e entrepreneurial e global innovative e entrepreneurial e global

Example 7.2

oy

Program 2-11

/Y This program uses two functions that accept addresses of
/4 wariables as arguments.

¢include =iocstream:>

using namespace std;

/4 Function prototypes
vold getMumber(int *);
void doubleValue(int *);

int main()

1
int number;
S/ Call getlNumber and pass the address of number.
getlumber (anumber) ;
S Call doubleValue and pass the address of number.
doubleValue (anumber) ;
/4 Display the wvalue in number.
cout << "That walue doubled is << number =< endl;
return 03

}

innovative e entrepreneurial e global

®UIM
r

» Refer to Exercise 10.14 No. 5 in pg. 298.

Exercise 8

« Solve the problem.

www.utm.my

@UTM/ Example 7.2 (cont.)
7~

Program 9-11 (continued)

l,-"_..-’#******************#***
/4 Definition of getNumber. The parameter, input, is a pointer. =*
/4 This function asks the user for a number. The wvalue entered *

/4 is stored in the wvariable pointed to by input. *
l,-"_..-’***

void getMNumber(int *input)

{
cout =< "Enter an integer number: ";
cin > *=input:

+

j'_j#****#******#******#***
/4 Definitien of doubleValue. The parameter, wal, is a pointer. *
/4 This function multiplies the wvariable pointed to by wval by *
R A = *
/'_f***

void deoubleValue(int *wal)
{
*wyal *= 2;

¥

Program Output with Example Input Shown in Bold
Enter an integer number: 10 [Enter]
That walue doubled is 20

innovative e entrepreneurial e global www.utm.my

@—UTM Pointers to Constants

 If we want to store the address of a constant in a
pointer, then we need to store it in a pointer-to-
const.

« Example: Suppose we have the following
definitions:
const int SIZE = 6;
const double payRates[SIZE] =

{ 18.55, 17.45, 12.85,
14.97, 10.35, 18.89 };

* In this code, payRates is an array of constant

doubles.

innovative e entrepreneurial e global www.utm.my innovative e entrepreneurial e global www.utm.my

uuuuuuuuuuuuuuuuuu

ﬁ, PointerstoConstants = =~ 3 Declaration of a

Pointer to Constant

» Suppose we wish to pass the payRates
array to a function? Here's an example of
how we can do it.

The asterisk indicates that
rates is a pointer.

void displayPayRates (const double *rates, int size) l
{
for (int count = 0; count < size; count++) lCOTlSt dOUble| *rates
{ |
cout << "Pay rate for employee " << (count + 1)
<< " is $" << *(rates + count) << endl;

This is what rates points to.

The parameter, rates, is a pointer to const double.

P Constant Pointer — Declaration of a
Constant Pointers
« A constant pointer is a pointer that is .
initialized with an address, and cannot % EnEstAIgIcalonitic
: : ’ ptr is a constant pointer.
point to anything else. l
« Example

: l
1ntl* const ptr
int value = 22; ’

int * const ptr = &value; This is what ptr points to.


~~~~~~~~~~~~~~~~~~~~ Declaration of a —~ _“Constant Pointer to Constants

/ / Constant Pointers / /

» A constant pointer to a constant is:

* const indicates that — a pointer that points to a constant
ptr is a constant pointer. — a pointer that cannot point to anything except
I what it is pointing to
int '« const] ptr « Example:
‘ int value = 22;
const int * const ptr = &value;

This is what ptx points to.

entrepren:

UTM . UTM
OUTM Constant Pointer to Constants OUTM

* const indicates that
ptr is a constant pointer.

. l
Iconst 1nt”* const ptr

8 - Dynamic Memory Allocation

This is what ptr points to.




@Mwl}gﬁ)ynamic Memory Allocation @HI“MAynamic Memory Allocation

—

Can allocate storage for a variable while
program is running

« Can also use new to allocate array:
const int SIZE = 25;
arrayptr = new double[SIZE];

« Canthen use [] or pointer arithmetic to

« Computer returns address of newly access array:
allocated variable for(i = 0; i < SIZE; i++)
« Uses new operator to allocate memory: o arrayptrlil =1 % 1
double *dptr; for(i = 0; i < SIZE; i++)
dptr = new double; * (arrayptr + i) =i * i;
* new returns address of memory location - Program will terminate if not enough

memory available to allocate

U™/, : .
U™ Releasing Dynamic Memory | =~ 3 Example 7.8

r— r—

Program 9-14

Use delete to free dynamic memory:

// This program totals and averages the sales fiqures for any

delete iff)t:lf . // number of days. The figures are stored in a dynamically
! // allocated array.
» Use [] to free dynamic array: tinclute :iz;;;ig
delete [] arrayptr; using namespace std;
* Only use delete with dynamic memory! {int main()
double *sales, // To dynamically allocate an array
total = 0.0, // Accumilator

average; /{ To heold average sales




@UTM/ Example 7.8 (cont.) ©UIM

Program 9-14 (continued)
int numbDays, /4 To hold the number of days of sales
count ; [/ Counter variable

/4 Get the number of days cof sales.

cout << "How many days of sales figures do you wish ";
cout =< "to process? ";

cin »> numDays;

/4 Dynamically allocate an array large encugh to hold
/7 that many days of sales amounts.
sales = new double[numDays];

// Get the sales figures for each day.
cout =< "Enter the sales figures below.'\n";

for (count = 0; count < numbDays; count++)
{
cout << "Day " << (count + 1) << ": ";
cin => sales[count];
} T

innovative e entrepreneurial e global www.utm.my

@UTM/ Exercise 9 ©UIM

« Given the following program with 3 errors. Rewrite the
program to store the power value of the array’ s index
and print the values.

int main () {

const int SIZE = 25;

int *arrayptr;

arrayptr = new double[SIZE];

for(int 1 = 0; i < SIZE; i++)
*arrayptr[i] = 1 * i;

for(int 1 = 0; i < SIZE; i++)
cout <<*arrayptr + i<<endl;

return 0O;

}

innovative e entrepreneurial e global

/ Example 7.8 (cont.)

JS Calculate the total sales
for (count = 0; count < numbays; count++)

.{

total += sales|[count];

h

S/ Calculate the average sales per day
average = total / numbDays;

/4 Display the results

cout =< fixed << showpoint << setprecision(2);
cout =< "w\n\nTotal Sales: 5" << total =< endl;
cout =< "Average Sales: 3V =< averade << endl;

/4 Free dynamically allocated memory

delete [ ] sales;
sales = 0; // Make sales point to nunll.

return O;

www.utm.my

9 - Returning Pointers from Functions

innovative e entrepreneurial e global www.utm.my innovative e entrepreneurial e global www.utm.my




@UTM/ Returning Pointers from
“ Functions

» Pointer can be the return type of a
function:

int* newNum() ;

» The function must not return a pointer to a
local variable in the function.
A function should only return a pointer:

— to data that was passed to the function as an
argument, or

— to dynamically allocated memory

innovative e entrepreneurial e global

innovative e entrepreneurial e global

~~~~~~~~~~~~~~~~~~ Example 7.9

int *getRandomilumbers (int num)
1

int *array: J4 Array to hold the numbers
4 Return null if num is =Zero or negative.
if {(nuam == 0)

return MNULL:

S Dynamically allocate the array.
array = new int[num];

/4 Seed the random number generator by passing
S the return value of time(0) to srand.
srand{ time(0) };

/¢4 Populate the array with random numbers.
for (int count = 0; count < num; count++)

array[count] = rand(]};

/¢4 Return a pointer to the array.
return arrays;

innovative e entrepreneurial e global

