
06: INPUT AND OUTPUT

Programming Technique I

(SCSJ1013) Formatting Output

Introduction to Output Formatting

 Can control how output displays for numeric and string
data:
 size

 position

 number of digits

 Done through the use of manipulators, special variables or
objects that are placed on the output stream.

 Most of the standard manipulators are found in <iostream>,
some requires <iomanip> header file.

Stream Manipulators

Stream
Manipulator

Description

setw(n) Establishes a print field on n spaces.

fixed Displays floating-point numbers in fixed point
notation.

showpoint Causes a decimal point and trailing zeros to be
displayed, even there is no fractional part.

setprecision(n) Sets the precision of floating-point numbers.

left Causes subsequent output to be left justified.

right Causes subsequent output to be right justified.

Formatting Output: setw()

 Used to ouput the value of an expression in a specific
number of columns

 setw(x) - outputs the value of the next expression in x
columns

 The output is right-justified
 Example: if you specify the number of columns to be 8 and the

output requires only 4 columns, then the first four columns are left
blank

 If the number of columns specified is less than the number
of columns required by the output, the output automatically
expands to the required number of columns

Example 1: setw()

Example 2: setw()

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

cout << "*" << -17 << "*" << endl;

cout << "*" << setw(6) << -17 << "*" << endl << endl;

cout << "*" << "Hi there!" << "*" << endl;

cout << "*" << setw(20) << "Hi there!" << "*" << endl;

cout << "*" << setw(3) << "Hi there!" << "*" << endl;

return 0;

}

Example 1: left and right

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

int x = 15;

int y = 7634;

cout << left;

cout << setw(5) << x << setw(7) << y << setw(8) << "Warm"

<< endl;

cout << right;

cout << setw(5) << x << setw(7) << y << setw(8) << "Warm"

<< endl;

return 0;

}

Example 2: left and right
#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

cout << "*" << -17 << "*" << endl;

cout << "*" << setw(6) << -17 << "*" << endl;

cout << left;

cout << "*" << setw(6) << -17 << "*" << endl << endl;

cout << "*" << "Hi there!" << "*" << endl;

cout << "*" << setw(20) << "Hi there!" << "*" << endl;

cout << right;

cout << "*" << setw(20) << "Hi there!" << "*" << endl;

return 0;

}

Example 1: fixed

#include <iostream>

using namespace std;

int main()

{

double x = 15.674;

double y = 235.73;

double z = 9525.9874;

cout << fixed;

cout << x << endl << y << endl << z << endl;

return 0;

}

Example 2: fixed
#include <iostream>

using namespace std;

int main()

{

float small = 3.1415926535897932384626;

float large = 6.0234567e17;

float whole = 2.000000000;

cout << "Some values in general format" << endl;

cout << "small: " << small << endl;

cout << "large: " << large << endl;

cout << "whole: " << whole << endl << endl;

cout << fixed;

cout << "The same values in fixed format" << endl;

cout << "small: " << small << endl;

cout << "large: " << large << endl;

cout << "whole: " << whole << endl << endl;

return 0;

}

Example 1: showpoint

#include <iostream>

using namespace std;

int main()

{

double x = 15.674;

double y = 235.73;

double z = 9525.9874;

cout << showpoint;

cout << x << endl << y << endl << z << endl;

return 0;

}

Example 2: showpoint
#include <iostream>

using namespace std;

int main()

{

float lots = 3.1415926535, little1 = 2.25;

float little2 = 1.5, whole = 4.00000;

cout << "Some values with noshowpoint (the default)" << endl;

cout << "lots: " << lots << endl;

cout << "little1: " << little1 << endl;

cout << "little2: " << little2 << endl;

cout << "whole: " << whole << endl << endl;

cout << "The same values with showpoint" << endl;

cout << showpoint;

cout << "lots: " << lots << endl;

cout << "little1: " << little1 << endl;

cout << "little2: " << little2 << endl;

cout << "whole: " << whole << endl;

return 0;

}

Example: fixed and showpoint

#include <iostream>

using namespace std;

int main()

{

double x = 15.674;

double y = 235.73;

double z = 9525.9874;

cout << fixed << showpoint;

cout << x << endl << y << endl << z << endl;

return 0;

}

setprecision() Manipulator

 To control the number of significant digits (or precision) of
the output, i.e., the total number of digits before and after
the decimal point.

 However, when used with fixed, it specifies the number of
floating-points (i.e., the number of digits after the decimal
point).

 Without fixed, the setprecision() is set to a lower value, it
will print floating-point value using scientific notation.

 setprecision(n) – n is the number of significant digits or the
number of floating-point (if used with fixed).

Example 1: setprecision()

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

double x = 15.674;

double y = 235.73;

double z = 9525.9874;

cout << setprecision(2);

cout << x << endl << y << endl << z << endl;

return 0;

}

Example 2: setprecision()

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

double x = 156.74, y = 235.765, z = 9525.9874;

cout << setprecision(5) << x << endl;

cout << setprecision(3) << x << endl;

cout << setprecision(2) << x << endl;

cout << setprecision(1) << x << endl;

cout << fixed << setprecision(2);

cout << x << endl << y << endl << z << endl;

return 0;

}

In-Class Exercise
 What is the output of the following program:

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{ double val = 10.345;

cout << setprecision(5) << val << endl; //(a)

cout << setprecision(4) << val << endl; //(b)

cout << setprecision(3) << val << endl; //(c)

cout << setprecision(2) << val << endl; //(d)

cout << setprecision(1) << val << endl; //(e)

cout << "Apa Khabar \n Semua /n" << endl; //(f)

cout << static_cast<int>(val)/2 << endl; //(g)

cout << setw(6) << val*5 << endl; //(h)

cout << showpoint << fixed << setw(8) << val << endl;//(i)

return 0;

}

Formatted Input

Introduction to Input Formatting

 Can format field width for use with cin.

 Useful when reading string data to be stored in a character
array:

const int SIZE = 10;

char firstName[SIZE];

cout << "Enter your name: ";

cin >> setw(SIZE) >> firstName;

 cin reads one less character than specified with the setw()
manipulator.

Example: Input Formatting

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

const int SIZE = 10;

char firstName[SIZE];

cout << "Enter your name: ";

cin >> setw(SIZE) >> firstName;

cout << firstName << endl;

return 0;

}

Example: Problem using cin

#include <iostream>

using namespace std;

int main()

{

string name;

cout << "Enter your name: ";

cin >> name;

cout << name << endl;

return 0;

}

Input Formatting: getline()

 To read an entire line of input, use getline().

 When reading string data to be stored in a character array,
use getline() with two arguments:
 Name of array to store string

 Size of the array

 When reading string data to be stored as an object of string,
use getline() with two arguments:
 istream object, i.e cin

 string object

Example 1: getline()

#include <iostream>

using namespace std;

int main()

{

const int SIZE = 20;

char firstName[SIZE];

cout << "Enter your name: ";

cin.getline (firstName, SIZE);
cout << firstName << endl;

return 0;

}

Example 2: getline()

#include <iostream>

using namespace std;

int main()

{

string name;
cout << "Enter your name: ";

getline (cin, name);
cout << name << endl;

return 0;

}

In-Class Exercise

 Write C++ program to solve the flow chart:

START

Read name

Display name, address1 and address2

END

Read address1

Read address2

Input Formatting: get()

 To read a single character, use cin.
char ch;

cout << "Strike any key to continue";

cin >> ch;

Problem: will skip over blanks, tabs, <ENTER>

 Solution to read a single character, use get().
char ch;

cout << "Strike any key to continue";

cin.get(ch);

Advantage: Will read the next character entered, even
whitespace.

In-Class Exercise

 Write C++ program to solve the flow chart:

START

Read name

Display name, address1 and address2

END

Read address1

Read address2

Input Formatting: ignore()

 Mixing cin >> and cin.get() in the same program can cause
input errors that are hard to detect.

 To skip over unneeded characters that are still in the
keyboard buffer, use cin.ignore():

//skip next char

cin.ignore();

//skip the next 10 char. @ until a ‘\n'

cin.ignore(10,'\n');

In-Class Exercise
 What will be displayed if the user enters the following input:

202

L

#include <iostream>

using namespace std;

int main()

{

int id;

char code;

cout << "Enter an integer id: ";

cin >> id;

cout << "Enter a code: ";

cin.get(code);

cout << "Output\n" << id << "\t" << code;

return 0;

}

Introduction to Files

File Input and Output

 Can use files instead of keyboard and monitor screen for
program input and output.

 File: a set of data stored on a computer, often on a disk drive.
 Allows data to be retained between program runs.

 Programs can read from and/ or write to files.

 Used in many applications: word processing, databases,
spreadsheets, compilers.

 Steps: (1) Open the file (2) Use the file (read from, write to,
or both) (3) Close the file.

File Operations

 Requires fstream header file:
 use ifstream data type for input files.

 use ofstream data type for output files.

 use fstream data type for both input, output files.

 ifstream:
 Open for input only and file cannot be written to.

 Open fails if file does not exist.

 ofstream:
 Open for output only and file cannot be read from.

 File created if no file exists.

 File contents erased if file exists.

File Operations (cont.)

 fstream object can be used for either input or output.

 fstream: must specify mode on the open statement. Sample
modes:

 ios::in for input mode.

 ios::out for output mode.

 ios::binary for binary mode.

 ios::app for append mode. All output operations are performed at
the end of the file, appending the content to the current content of
the file.

Opening Files

 Create a link between file name (outside the program) and
file stream object (inside the program).

 Filename may include drive and/or path info.

 ifstream and ofstream - use the open() member function:

infile.open("inventory.dat");

outfile.open("report.txt");

 fstream - use the open() member function and mode(s):

infile.open("inventory.dat", ios::in);

outfile.open("report.txt", ios::out);

Opening Files (cont.)

 fstream - can be combined on open call:

dFile.open("class.txt", ios::in | ios::out);

 Can open file at declaration:
ifstream gradeList("grades.txt");

fstream infile("inventory.dat", ios::in);

fstream file("class.txt", ios::in | ios::out);

 Output file will be created if necessary; existing file will be
erased first.

 Input file must exist for open to work.

Opening Files (cont.)

 File stream object set to 0(false), if open failed. Example:
if (!input)

{ cout << “ERROR: Cannot open file\n”;

exit(1); }

 Can use fail() member function to detect file open error:
if (input.fail())

{ cout << “ERROR: Cannot open file\n”;

exit(1); }

 Can use is_open() member function to check if a file is open:
if (!input.is_open())

{ cout << “ERROR: Cannot open file\n”;

exit(1); }

Using Files

 Can use output file object and << to send data to a file:

outfile << "Inventory report";

 Can use input file object and >> to copy data from file to
variables:

infile >> partNum;

infile >> qtyInStock >> qtyOnOrder;

 Can use eof() member function to test for end of input file.

Closing Files

 Use the close() member function:

infile.close();

outfile.close();

 Don’t wait for operating system to close files at program end:
 may be limit on number of open files.

 may be buffered output data waiting to send to file.

#include <iostream> //copy 10 numbers between files

#include <fstream>

using namespace std;

int main()

{

fstream infile("input.txt", ios::in); // open the files

fstream outfile("output.txt", ios::out);

int num;

for (int i = 1; i <= 10; i++) {

infile >> num; // use the files

outfile << num; }

infile.close(); // close the files

outfile.close();

}

Example 1: File Operations

Example 2: File Operations Example 3: File Operations

#include <fstream>

using namespace std;

int main()

{

ifstream input("inputfile.txt");

char str[80];

if (!input)

{

cout << "While opening a file an error is encountered" << endl;

return 0;

}

else

cout << "File is successfully opened" << endl;

while(!input.eof())

{

input.getline(str, 80);

cout << str << endl;

}

input.close();

return 0;

}

Example 4: File Operations
#include <iostream>

#include <fstream>

using namespace std;

int main ()

{

int num;

ifstream inp("input.txt"); // open the input file

ofstream out("output.txt"); // open the output file

if (!inp.is_open()) // check for successful opening

{

cout << "Input file could not be opened! Terminating!\n;

return 0;

}

while (inp >> num)

out << num * 2 << endl;

inp.close();

out.close();

cout << "Done!" << endl;

return 0;

}

Example 5: File Operations

