DISCRETE STRUCTURE (SECI 1013)

TUTORIAL 1

Due date: 24th Nov 2020

- 1. Let the universal set be the set **R** of all real numbers and let $A = \{x \in \mathbf{R} \mid 0 < x \le 2\}$, $B = \{x \in \mathbf{R} \mid 1 \le x < 4\}$ and $C = \{x \in \mathbf{R} \mid 3 \le x < 9\}$. Find each of the following:
 - a) $A \cup C$
 - b) $(A \cup B)'$
 - c) $A' \cup B'$
- 2. Draw Venn diagrams to describe sets A, B, and C that satisfy the given conditions.
 - a) $A \cap B = \emptyset$, $A \subseteq C$, $C \cap B \neq \emptyset$
 - b) $A \subseteq B$, $C \subseteq B$, $A \cap C \neq \emptyset$
 - c) $A \cap B \neq \emptyset$, $B \cap C \neq \emptyset$, $A \cap C = \emptyset$, $A \not\subset B$, $C \not\subset B$
- 3. Given two relations S and T from A to B,

$$S \cap T = \{(x,y) \in A \times B \mid (x,y) \in S \text{ and } (x,y) \in T\}$$

$$S \cup T = \{(x,y) \in A \times B \mid (x,y) \in S \text{ or } (x,y) \in T\}$$

Let $A = \{-1, 1, 2, 4\}$ and $B = \{1, 2\}$ and defined binary relations S and T from A to B as follows:

For all
$$(x,y) \in A \times B$$
, $x \mid S \mid y \leftrightarrow |x| = |y|$

For all
$$(x,y) \in A \times B$$
, $x T y \leftrightarrow x - y$ is even

State explicitly which ordered pairs are in $A \times B$, S, T, $S \cap T$, and $S \cup T$.

- 4. Show that $\neg ((\neg p \land q) \lor (\neg p \land \neg q)) \lor (p \land q) \equiv p$. State carefully which of the laws are used at each stage.
- 5. $R_1 = \{(x,y) | x+y \le 6\}$; R_1 is from X to Y; $R_2 = \{(y,z) | y>z\}$; R_2 is from Y to Z; ordering of X, Y, and Z: 1, 2, 3, 4, 5.

Find:

- a) The matrix A_1 of the relation R_1 (relative to the given orderings)
- b) The matrix A_2 of the relation R_2 (relative to the given orderings)
- c) Is R_1 reflexive, symmetric, transitive, and/or an equivalence relation?
- d) Is R_2 reflexive, antisymmetric, transitive, and/or a partial order relation?
- 6. Suppose that the matrix of relation R_1 on $\{1, 2, 3\}$ is

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

relative to the ordering 1, 2, 3, and that the matrix of relation R_2 on $\{1, 2, 3\}$ is

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

relative to the ordering 1, 2, 3. Find:

- a) The matrix of relation $R_1 \cup R_2$
- b) The matrix of relation $R_1 \cap R_2$
- 7. If $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are both one-to-one, is f + g also one-to-one? Justify your answer.
- 8. With each step you take when climbing a staircase, you can move up either one stair or two stairs. As a result, you can climb the entire staircase taking one stair at a time, taking two at a time, or taking a combination of one- or two-stair increments. For each integer $n \ge 1$, if the staircase consists of n stairs, let c_n be the number of different ways to climb the staircase. Find a recurrence relation for c_1, c_2, \ldots, c_n .
- 9. The Tribonacci sequence (t_n) is defined by the equations,

$$t_1 = t_2 = t_3 = 1$$
, $t_n = t_{n-1} + t_{n-2} + t_{n-3}$ for all $n \ge 4$.

- a) Find *t*7.
- b) Write a recursive algorithm to compute t_n , $n \ge 1$.