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QUESTION 1

[25 marks]

a) LetA={1, 2,3 4,5,6,7, 8} B={2,5, 9}, and C={a, b}. Find each of the following:

i. A-B

ii. (AnB)uUC
iii. AnBNC
iv. BxC

v. P(C)
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b) By referring to the properties of set operations, show that: (4 marks)
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c) Construct the truth table for, A= (—=p Vv q) < (q > p). (4 marks)
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d) Proof the following statement using direct proof

“For all integer X, if X is odd, then (x+2)? is odd” (4 marks)
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e) Let P(x,y) be the propositional function x >y. The domain of discourse for x and y is

the set of all positive integers. Determine the truth value of the following statements.
Give the value of x and y that make the statement TRUE or FALSE.
. dx3IyP(x,y)
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. VxVyP(x,y)

'f} nyY all pntive i igserg.

I FEPRICH'D it ¥aNy Plny )
Wy = 2

y= | i . b A= 5 4.9
Pla,v) : a2 Tme Plry): 5294 Talse .

QUESTION 2 [25 marks]
1 1 0
a) Suppose that the matrix of relation Ron {1,2,3}is|0 1 0
1 0 O
relative to the ordering 1, 2, 3. (7 marks)

i.  Find the domain and the range of R.

ii. Determine whether the relation is irreflexive and/or antisymmetric. Justify
your answer.
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b) Let S={(x,y)| x+y >9}is a relation on X={2, 3, 4, 5}. Find: (6 marks)
i.  The elements of the set S.

ii. Is S reflexive, symmetric, transitive, and/or an equivalence relation? Justify
your answer.
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c) Let X={1, 2, 3}, Y={1, 2, 3,4}, and Z={1, 2}. (6 marks)

i. Define a function f: X—Y that is one-to-one but not onto.
ii. Define a function g: X—Z that is onto but not one-to-one.

iii. Define a function h: X—X that is neither one-to-one nor onto.
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d) Let mand n be functions from the positive integers to the positive integers defined by
the equations:

m(x) = 4x+3, n(x) = 2x-4 (6 marks)

i. Find the inverse of m.
ii.  Find the compositions of n o m.

o) " (x) = 4x +3
."Lj' M T {nopm
/] = 4x+3 " ) ()

3
ey
N
S
1

3
L
—~
=
p—
I
X
7
o
r
ki
—~
-
w
+
—



QUESTION 3 [15 marks]

a) Given the recursively defined sequence.

a, = ai_, + 2k, forallintegersk =2, a; =1

i) Find the first three terms. (2 marks)
i) Write the recursive algorithm. (5 marks)
q,} e T I P LD

—

:] IE"""!'ll At e,
Q, = "i_

'CI.E_: | & 1[1'}_ > 5
h, = '5:&'.‘1-!__.3'}

L
"~
=

[B) vecamve  algorvne

oz .
Cuargay = O [y
o (e
£
ey =1
| 1 {'I'- 2= .}
o) = o (k=13 2 (%)
vibay, @ (%)

3



b) A certain computer algorithm executes twice as many operations when it is run with an
input of size k as it is run with an input of size k—1 (where k is an integer that is greater
than 1). When the algorithm is run with an input of size 1, it executes seven operations.
Let rx = the number of executes with an input size k. Find a recurrence relation for ry,
ra, ... Ik (4 marks)
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c) Given the recursive algorithm:

Input: n
Output: S (n)
S(n) {

if (n=1)

return 5

return 5*S(n-1)

¥

Trace S(4).

(4 marks)
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QUESTION 4 [25 marks]

a) Hexadecimal numbers are made using the sixteen digits 0, 1, 2, 3,4, 5,6, 7, 8,9, A, B,
C, D, E, F. They are denoted by the subscript 16. How many hexadecimal numbers
begin with one of the digits 3 through B, end with one of the digits 5 through F and are

4 digits long?
(4 marks)
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b) Suppose that in a certain state, all automobile license plates have four letters followed
by three digits. How many license plates could begin with A and end in 0?
(4 marks)
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¢) How many arrangements in a row of no more than three letters can be formed using the
letters of word COMPUTER (with no repetitions allowed)?
(5 marks)
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d) A computer programming team has 13 members. Suppose seven team members are
women and six are men. How many groups of seven can be chosen that contain four
women and three men?

(4 marks)
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e) How many distinguishable ways can the letters of the word PROBABILITY be
arranged?
(4 marks)
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f) A bakery produces six different kinds of pastry. How many different selections of ten

pastries are there?
(4 marks)
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QUESTION 5 [10 marks]

a) Eighteen persons have first names Ali, Bahar, and Carlie and last names Daud and
Elyas. Show that at least three persons have the same first and last names.
(4 marks)
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b) How many integers from 1 through 20 must you pick in order to be sure of getting at
least one that is odd?

(3 marks)
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¢) How many integers from 1 through 100 must you pick in order to be sure of getting one
that is divisible by 5?
(3 marks)
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