

SCHOOL OF COMPUTING

SEMESTER I 2020/2021

SECI 1013 – DISCRETE STRUCTURE SECTION-08

ASSIGNMENT 1

NAMA	NO MATRIK
KHAIRUL IZZAT BIN HASHIM	A20EC0058
AIMAN NA'IM BIN ARIFFIN	A20EC0008
BRENDAN DYLAN GAMPA ANAK JOSEPH DUSIT	A20EC0021

LECTURER: DR NUR AZIZAH ALI

DATE OF SUBMISSION: 30^{TH} NOVEMBER 2020

DISCRETE STRUCTURE (SECI 1013)

2020/2021 - SEMESTER 1

ASSIGNMENT#1

- 1. Let the universal set be the set **R** of all real numbers and let $A = \{x \in \mathbf{R} \mid 0 < x \le 2\}$, $B = \{x \in \mathbf{R} \mid 1 \le x < 4\}$ and $C = \{x \in \mathbf{R} \mid 3 \le x < 9\}$. Find each of the following:
 - a) $A \cup C$
 - b) $(A \cup B)'$
 - c) $A' \cup B'$

Answer:

$$A = \{ 1, 2 \}$$

$$B = \{ 1,2,3 \}$$

$$C = \{ 3,4,5,6,7,8 \}$$

- a) A \cup C = {1,2,3,4,5,6,7,8}
- b) $(A \cup B)' = \{4,5,6,7,8\}$
- c) $A' = \{3,4,5,6,7,8\}$ $B' = \{4,5,6,7,8\}$ $A' \cup B' = \{3,4,5,6,7,8\}$

2. Draw Venn diagrams to describe sets A, B, and C that satisfy the given conditions.

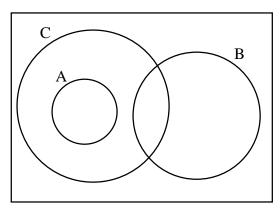
a)
$$A \cap B = \emptyset$$
, $A \subseteq C$, $C \cap B \neq \emptyset$

b)
$$A \subseteq B$$
, $C \subseteq B$, $A \cap C \neq \emptyset$

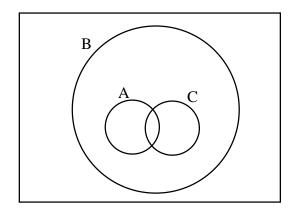
c)
$$A \cap B \neq \emptyset$$
, $B \cap C \neq \emptyset$, $A \cap C = \emptyset$, $A \not\subset B$, $C \not\subset B$

Answer:

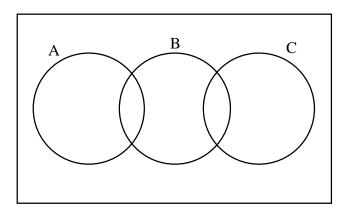
a) $A \cap B = \emptyset, A \subseteq C, C \cap B \neq \emptyset$



b) $A \subseteq B$, $C \subseteq B$, $A \cap C \neq \emptyset$



c) $A \cap B \neq \emptyset$, $B \cap C \neq \emptyset$, $A \cap C = \emptyset$, $A \not\subset B$, $C \not\subset B$



3. Given two relations S and T from A to B, $S \cap T = \{(x,y) \in A \times B \mid (x,y) \in S \text{ and } (x,y) \in T\}$

$$S \cup T = \{(x,y) \in A \times B \mid (x,y) \in S \text{ or } (x,y) \in T\}$$

Let $A = \{-1, 1, 2, 4\}$ and $B = \{1,2\}$ and defined binary relations S and T from A to B as follows:

For all
$$(x,y) \in A \times B$$
, $x \mid S \mid y \leftrightarrow |x| = |y|$

For all
$$(x,y) \in A \times B$$
, $x T y \leftrightarrow x - y$ is even

State explicitly which ordered pairs are in $A \times B$, S, T, $S \cap T$, and $S \cup T$.

Answer:

Let
$$A = \{-1,1,2,4\}$$
 and $B = \{1,2\}$,

Given the condition for both sets S and T are:

For all
$$(x, y) \in A \times B$$
, $x S y \leftrightarrow |x| = |y|$

For all
$$(x, y) \in A \times B$$
, $x T y \leftrightarrow x - y$ is even

Therefore,

$$A \times B = \{ (-1,1), (-1,2), (1,1), (1,2), (2,1), (2,2), (4,1), (4,2) \}$$

$$S = \{ (-1,1), (1,1), (2,2) \}$$

$$T = \{ (-1,1), (1,1), (2,2), (4,2) \}$$

$$S \cup T = \{ (-1,1), (1,1), (2,2), (4,2) \}$$

$$S \cap T = \{ (-1,1), (1,1), (2,2) \}$$

4. Show that $\neg ((\neg p \land q) \lor (\neg p \land \neg q)) \lor (p \land q) \equiv p$. State carefully which of the laws are used at each stage.

Answer:

$$\neg \big((\neg p \land q) \lor (\neg p \land \neg q) \big) \lor (p \land q) \equiv p$$

from LHS,

$$\neg ((\neg p \land q) \lor (\neg p \land \neg q)) \lor (p \land q)$$

$$= (\neg(\neg p \land q) \land \neg(\neg p \land \neg q)) \lor (p \land q)$$

De Morgan's Law

$$= ((p \lor \neg q) \land (p \lor q)) \lor (p \land q)$$

De Morgan's Law, Double Negation Law

$$= p \lor (\neg q \land q) \lor (p \land q)$$

Distributive Law

$$= (p \lor \emptyset) \lor (p \land q)$$

Compliment Law

$$= p \lor (p \land q)$$

Absorption Law

$$= p$$
 (shown)

5. $R_1 = \{(x,y) | x+y \le 6\}$; R_1 is from X to Y; $R_2 = \{(y,z) | y>z\}$; R_2 is from Y to Z; ordering of X, Y, and Z: 1, 2, 3, 4, 5.

Find:

- a) The matrix A_1 of the relation R_1 (relative to the given orderings)
- b) The matrix A_2 of the relation R_2 (relative to the given orderings)
- c) Is R_1 reflexive, symmetric, transitive, and/or an equivalence relation?
- d) Is R_2 reflexive, antisymmetric, transitive, and/or a partial order relation?

Answer.

a)
$$R_1 = \left\{ \begin{array}{l} (1,1), (1,2), (1,3), (1,4), (1,5), (2,1), (2,2), (2,3), (2,4), \\ (2,3), (2,4), (3,1), (3,2), (3,3), (4,1), (4,2), (5,1) \end{array} \right\}.$$

$$A_{1} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 1 & 1 & 1 \\ 2 & 3 & 1 & 1 & 1 & 0 \\ 3 & 1 & 1 & 1 & 0 & 0 \\ 4 & 1 & 1 & 0 & 0 & 0 \\ 5 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

b)
$$R_2 = \{ (5,1), (5,2), (5,3), (5,4), (4,1), (4,2), (4,3), (3,1), (3,2), (3,1), (2,1) \}$$

$$A_{1} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 4 & \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

- c) R_1 is not reflexive.
 - R_1 is symmetric.
 - R_1 is transitive.
 - R_1 is not equivalence relation.
- d) R_2 is irreflexive.
 - R_2 is not antisymmetric
 - R_2 is not transitive.
 - R_2 is not partial order relation.

6. Suppose that the matrix of relation R_1 on $\{1, 2, 3\}$ is

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

relative to the ordering 1, 2, 3, and that the matrix of relation R_2 on $\{1, 2, 3\}$ is

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

relative to the ordering 1, 2, 3. Find:

- a) The matrix of relation $R_1 \cup R_2$
- b) The matrix of relation $R_1 \cap R_2$

Answers:

$$\begin{split} R_1 &= \{(1,1),(2,2),(2,3),(3,1),(3,3)\} \\ R_2 &= \{(1,2),(2,2),(3,1),(3,3)\} \end{split}$$

a.
$$R_1 \cup R_2 = \{(1,1), (1,2), (2,2), (2,3), (3,1), (3,3)\}$$

$$R_1 \cup R_2 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

b.
$$R_1 \cap R_2 = \{(2,2), (3,1), (3,3)\}$$

$$R_1 \cap R_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

7. If $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are both one-to-one, is f + g also one-to-one? Justify your answer.

Answer:

$$f(R) = R$$

 $g(R) = R$
 $f(R) + g(R) = R + R = 2R$
Let,
 $(f + g)(R_1) = (f + g)(R_2)$
 $2R_1 = 2R_2$

 \therefore this shows that f + g is one-to-one.

8. With each step you take when climbing a staircase, you can move up either one stair or two stairs. As a result, you can climb the entire staircase taking one stair at a time, taking two at a time, or taking a combination of one- or two-stair increments. For each integer $n \ge 1$, if the staircase consists of n stairs, let c_n be the number of different ways to climb the staircase. Find a recurrence relation for $c_1, c_2, ..., c_n$.

Answer:

 $R_1 = R_2$

n = numbers of stairs

 c_n = number of different ways to climb the staircase

When n = 1 only 1 stair can be taken to climb it $c_1 = 1$

When n = 2 either take 2 stairs at once or take the stairs one by one $c_2 = 2$

When $n \ge 3$ we need to use combination of 1 stair and 2 stairs

If we take 1 step: Cn-1 more ways to climb the stairs If we take 2 step: Cn-2 more ways to climb the stairs

 $c_n = c_{n-1} + c_{n-2}$ when $n \ge 3$

9. The Tribonacci sequence (t_n) is defined by the equations,

```
t_0 = 0, t_1 = t_2 = 1, t_n = t_{n-1} + t_{n-2} + t_{n-3} for all n \ge 3.
```

- a) Find t_7 .
- b) Write a recursive algorithm to compute t_n , $n \ge 3$.

Answer:

```
a) t_3 = t_2 + t_1 + t_0 = 1 + 1 + 0 = 2

t_4 = t_3 + t_2 + t_1 = 2 + 1 + 1 = 4

t_5 = t_4 + t_3 + t_2 = 4 + 2 + 1 = 7

t_6 = t_5 + t_4 + t_3 = 7 + 4 + 2 = 13

t_7 = t_6 + t_5 + t_4 = 13 + 7 + 4 = 24

t_7 = 24
```

b) Input n integer positive
 Output t(n)
 t(n)
 {
 if (n=0 or n=1 or n=2)
 return 1
 return t(n-1) + t(n-2) + t(n-3)
 }