SCR 1013 DIGITAL LOGIC

TUTORIAL 4a

1. Determine the correct number of Variable, Literal and Term for the following Boolean Expression.

$$
F=A B C+\bar{A} B+\bar{C} \bar{D}+A \bar{B} C \bar{E}
$$

A. Variable $=4$, Literal $=4$ and Term $=11$
B. Variable $=5$, Literal $=7$ and Term $=4$
C. Variable $=4$, Literal $=11$ and Term $=5$
D. Variable $=5$, Literal $=5$ and Term $=11$
2. Which of the following Boolean Expressions needs to be applied DeMorgan's Theorem?
i. $\quad F=A B C+\bar{C} \bar{D}+A \bar{B} C \bar{E}$
iii. $F=A B C+\bar{A} B+\overline{\bar{C}} \overline{\bar{D}}+A \bar{B} C \bar{E}$
ii. $\quad F=(\overline{A+C}) \cdot(\bar{A} B+A \bar{B}+C \bar{E})$
iv. $F=(\overline{\overline{A+C}}) \cdot(\bar{A} B+C \bar{E})$
A. i and ii
C. iii and iv
B. ii and iii
D. ii, iii and iv
3. If you are converting a non-standard Products of Sum (POS) to a standard POS form of Boolean Expression, what is the step involved?
A. Add 1 in the Boolean Expression and use rule $A+1=1$
B. Add 1 in the Boolean Expression and use rule $A+\bar{A}=1$
C. Add 0 in the Boolean Expression and use rule $A \cdot 0=0$
D. Add 0 in the Boolean Expression and use rule $A \cdot \bar{A}=0$
4. Determine how to write Products of Sum (POS) term in the following truth table.

A	B	C	Output, F
0	0	1	0
1	0	0	1

A. Look at output $\mathrm{F}=0$ and write the term as $\bar{A}+\bar{B}+C$
B. Look at output $\mathrm{F}=0$ and write the term as $A+B+\bar{C}$
C. Look at output $\mathrm{F}=1$ and write the term as $\bar{A} \cdot \bar{B} \cdot C$
D. Look at output $\mathrm{F}=1$ and write the term as $A \cdot B \cdot \bar{C}$
5. Write Boolean Expression for Z in the following circuit diagram:

A. $Z=(\bar{A}+\bar{B}) \cdot(C+D) \cdot \bar{C}$
B. $Z=\bar{A} \cdot \bar{B}+C \cdot D+\bar{C}$
C. $Z=\overline{(A+B)} \cdot(C+D) \cdot \bar{C}$
D. $Z=\overline{A \cdot B}+C \cdot D+\bar{C}$
6. Write the following Sigma and PI representation into their correct Boolean Expression.

$$
Z=\sum_{A B C D}(10) \text { and } Y=\prod_{A B C D}(10)
$$

A. $Z=A \bar{B} C \bar{D}$ and $Y=A+\bar{B}+C+\bar{D}$
B. $Z=A \bar{B} C \bar{D}$ and $Y=\bar{A}+B+\bar{C}+D$
C. $Z=\bar{A} B \bar{C} D$ and $Y=A+\bar{B}+C+\bar{D}$
D. $Z=\bar{A} B \bar{C} D$ and $Y=\bar{A}+B+\bar{C}+D$
7. Which of the following statement of K-Map is FALSE?
A. The adjacent cells in K-Map can only differ by only one variable value
B. In a K-Map with 4 variables, the top-most and the bottom-most cells are adjacent
C. The number of cells in a K-Map is equivalent to the total number of possible input variable combinations
D. K-Map can be used for expressions with infinite number of variables
8. If $\mathrm{X}=\overline{\mathrm{A} \overline{\mathrm{B}}+\overline{\mathrm{CE}}}$ then X is also equals to
A. $\overline{A B}(C+D)$
B. $C E(\overline{\mathrm{~A}}+\mathrm{B})$
C. $(\mathrm{A}+\overline{\mathrm{B}})(\mathrm{C}+\mathrm{D})$
D. $\bar{A} \bar{B} C D$
9. Which of the following is TRUE
A. $A \bar{C}+(B D)(A \bar{C})=A \bar{C}$
B. $(\mathrm{A}+\mathrm{C})(\overline{\mathrm{A}+\mathrm{C}})=1$
C. $\overline{X \overline{Y Y Z}}=\bar{X}+\bar{Y}+Z$
D. $\mathrm{BD}+\overline{\overline{\mathrm{BD}}} \mathrm{E}=\mathrm{BD}+\mathrm{E}$
10. Referring to circuit simplification, which of the following statement is FALSE about "simpler circuit"?
A. less gates
C. less number of outputs
B. less input to a gate
D. lower cost
11. A circuit with three variables A, B and C, has an expression of $X=A \bar{C}+\bar{B} C$. Which of the following is the standard Sum of Products (SOP) for the expression?
A. $(A+B+C)(A+\bar{B}+C)$
B. $\mathrm{AB} \bar{C}+\mathrm{ABC}+\mathrm{A} \bar{B} \mathrm{C}+\mathrm{A} \bar{B} \mathrm{C}$
C. $(A+B+\bar{C})(A+\bar{B}+C)$
D. $\mathrm{A} \bar{B} \bar{C}+\mathrm{AB} \bar{C}+\bar{A} \bar{B} \mathrm{C}+\mathrm{A} \bar{B} \mathrm{C}$
12. The simplification of the following K-Map will produce

CD				
AB	00	01	11	10
00	1	1	X	1
01	1	1	X	X
11	X	X	x	X
10	1	1	x	1

A. $\bar{C}(\bar{A}+\mathrm{D})+\bar{B} \mathrm{D}$
B. $B D+A \bar{D}+\bar{A} C$
C. $A B \bar{C}+D(A+\bar{B})$
D. 1
13. Determine the Product of Sums of a circuit if it's Sum of Products is $X=\sum_{A B C}$ (1,3,4,5,7)
A. $X=A \bar{B}+C$
B. $X=\prod_{A B C}(1,3,4,5,7)$
C. $\mathrm{X}=(\mathrm{A}+\bar{B}+\mathrm{C})(\mathrm{A}+\bar{B}+\bar{C})(\bar{A}+\bar{B}+\mathrm{C})(\mathrm{A}+\bar{B}+\mathrm{C})(\bar{A}+\mathrm{B}+\mathrm{C})(\mathrm{A}+\mathrm{B}+\mathrm{C})$
D. $\mathrm{X}=(\mathrm{A}+\mathrm{B}+\mathrm{C})(\mathrm{A}+\bar{B}+\mathrm{C})(\bar{A}+\bar{B}+\mathrm{C})$

Question14

a) Write Boolean expression for $\mathrm{M}, \mathrm{N}, \mathrm{X}$ and Y in terms of variables $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .
b) Construct the truth table for the given logic circuit, include M and N in your truth table.

Question 15

a) Simplify the following Boolean expression using DeMorgan's law and Boolean rules.

$$
Y=\overline{\overline{(A B \bar{C}+A \bar{B}}) \cdot} \cdot \overline{(A B C+\bar{A} \bar{B}+B)}
$$

b) You are given a truth table as follows:

Input				Output
A	B	C	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

i. Write the standard Boolean equation for SOP and the Sigma (Σ) representation.
ii. Write the standard Boolean equation for POS and the $\mathrm{Pi}(\Pi)$ representation.
iii. Construct the K-Map.
iv. From the K-Map:
a. Get the minimize form for SOP.
b. Get the minimize form for POS.
v. Between the minimize SOP in $\operatorname{iv}(\mathrm{a})$ and POS in $\mathrm{iv}(\mathrm{b})$, which is more cost effective in the circuit implementation. Comment your answer.

