SCR 1013 DIGITAL LOGIC

TUTORIAL 4a

1. Determine the correct number of *Variable*, *Literal* and *Term* for the following Boolean Expression.

 $F = ABC + \overline{AB} + \overline{CD} + A\overline{B}C\overline{E}$

- A. Variable = 4, Literal = 4 and Term = 11
- B. Variable = 5, Literal = 7 and Term = 4
- C. Variable = 4, Literal = 11 and Term = 5
- D. Variable = 5, Literal = 5 and Term = 11
- 2. Which of the following Boolean Expressions needs to be applied DeMorgan's Theorem?
 - i. $F = ABC + \overline{CD} + A\overline{B}C\overline{E}$ iii. $F = ABC + \overline{AB} + \overline{\overline{CD}} + A\overline{B}C\overline{E}$ iii. $F = (\overline{A+C}).(\overline{AB} + A\overline{B} + C\overline{E})$ iv. $F = (\overline{\overline{A+C}}).(\overline{AB} + C\overline{E})$
 - A. i and iiC. iii and ivB. ii and iiiD. ii, iii and iv
 - 3. If you are converting a non-standard Products of Sum (POS) to a standard POS form of Boolean Expression, what is the step involved?
 - A. Add 1 in the Boolean Expression and use rule A+1=1
 - B. Add 1 in the Boolean Expression and use rule $A + \overline{A} = 1$
 - C. Add 0 in the Boolean Expression and use rule A.0 = 0
 - D. Add 0 in the Boolean Expression and use rule $A.\overline{A} = 0$
 - 4. Determine how to write Products of Sum (POS) term in the following truth table.

А	В	С	Output, F
0	0	1	0
1	0	0	1

- A. Look at output F=0 and write the term as $\overline{A} + \overline{B} + C$
- B. Look at output F=0 and write the term as $A + B + \overline{C}$
- C. Look at output F=1 and write the term as A.B.C
- D. Look at output F=1 and write the term as $A.B.\overline{C}$

SCR 1013 DIGITAL LOGIC

5. Write Boolean Expression for Z in the following circuit diagram:

- A. $Z = (\overline{A} + \overline{B}).(C + D).\overline{C}$ C. $Z = \overline{(A + B)}.(C + D).\overline{C}$ B. $Z = \overline{A}.\overline{B} + C.D + \overline{C}$ D. $Z = \overline{A.B} + C.D + \overline{C}$
- 6. Write the following Sigma and PI representation into their correct Boolean Expression.

$$Z = \sum_{ABCD} (10) \text{ and } Y = \prod_{ABCD} (10)$$

- A. $Z = A\overline{B}C\overline{D}$ and $Y = A + \overline{B} + C + \overline{D}$
- B. $Z = A\overline{B}C\overline{D}$ and $Y = \overline{A} + B + \overline{C} + D$
- C. $Z = \overline{A}B\overline{C}D$ and $Y = A + \overline{B} + C + \overline{D}$
- D. $Z = \overline{A}B\overline{C}D$ and $Y = \overline{A} + B + \overline{C} + D$
- 7. Which of the following statement of K-Map is FALSE?
 - A. The adjacent cells in K-Map can only differ by only one variable value
 - B. In a K-Map with 4 variables, the top-most and the bottom-most cells are adjacent
 - C. The number of cells in a K-Map is equivalent to the total number of possible input variable combinations
 - D. K-Map can be used for expressions with infinite number of variables
- 8. If $X = A\overline{B} + \overline{CE}$ then X is also equals to
 - A. \overline{AB} (C +D)C. $(A+\overline{B})$ (C+D)B. CE ($\overline{A}+B$)D. \overline{A} \overline{B} C D
- 9. Which of the following is **TRUE**
 - A. $A\overline{C} + (BD)(A\overline{C}) = A\overline{C}$ C. $\overline{X \ \overline{Y} \ \overline{Z}} = \overline{X} + \overline{Y} + Z$ B. $(A+C)(\overline{A+C}) = 1$ D. $BD + \overline{BD} E = BD + E$
- 10. Referring to circuit simplification, which of the following statement is **FALSE** about "simpler circuit"?
 - A. less gates
 - B. less input to a gate

- C. less number of outputs
- D. lower cost

- 11. A circuit with three variables A, B and C, has an expression of $X = A\overline{C} + \overline{B}C$. Which of the following is the standard Sum of Products (SOP) for the expression?
 - A. $(A + B + C)(A + \overline{B} + C)$ C. $(A + B + \overline{C})(A + \overline{B} + C)$ B. $AB\overline{C} + ABC + A\overline{B}C + A\overline{B}C$ D. $A\overline{B}\overline{C} + AB\overline{C} + A\overline{B}C + A\overline{B}C$
- 12. The simplification of the following K-Map will produce

00

\sim	D					
AB	00	01	11	10		
00	0 1	1	X	1		
01	l 1	1	X	Х		
11	L X	X	X	X]	
10	0 1	1	X	1]	
A. $\overline{C}(\overline{A}+D)+\overline{B}D$			C.	$AB\overline{C} + L$	$D(A + \overline{B})$	
B. $BD + A\overline{D} + \overline{A}C$			D. 1			

- 13. Determine the Product of Sums of a circuit if it's Sum of Products is $X = \sum_{ABC} (1,3,4,5,7)$
 - A. $X = A\overline{B} + C$
 - B. $X = \prod_{ABC} (1,3,4,5,7)$
 - C. $X = (A + \overline{B} + C)(A + \overline{B} + \overline{C})(\overline{A} + \overline{B} + C)(A + \overline{B} + C)(\overline{A} + B + C)(A + B + C)$
 - D. $X = (A+B+C)(A+\overline{B}+C)(\overline{A}+\overline{B}+C)$

Question14

- a) Write Boolean expression for M, N, X and Y in terms of variables A, B, C and D.
- b) Construct the truth table for the given logic circuit, include M and N in your truth table.

Question 15

a) Simplify the following Boolean expression using DeMorgan's law and Boolean rules.

$$Y = (AB\overline{C} + A\overline{B}).(ABC + \overline{AB} + B)$$

SCR 1013 DIGITAL LOGIC

b) You are given a truth table as follows:

	Inp	Output		
А	В	С	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

- i. Write the standard Boolean equation for SOP and the Sigma (Σ) representation.
- ii. Write the standard Boolean equation for POS and the Pi (\prod) representation.
- iii. Construct the K-Map.
- iv. From the K-Map:
 - a. Get the minimize form for SOP.
 - b. Get the minimize form for POS.
- v. Between the minimize SOP in iv(a) and POS in iv(b), which is more cost effective in the circuit implementation. Comment your answer.