Question 1 [20 Marks]

a) Convert the following numbers to its decimal equivalent. [7m]
i. $\quad 1011_{3}$
ii. 9E. A_{16}
b) Convert the decimal number 122.63_{10} to its binary equivalent (to five radix points). [7m]
c) Convert 114.6_{8} to its: [6m]
i. binary equivalent.
ii. hexadecimal equivalent.

Question 2 [25 Marks]

a) Convert the Gray Coded value $\mathbf{1 0 0 1} \mathbf{1 0 1 1}$ to its binary equivalent. [5m]
b) Perform the operation below using $\mathbf{8}$ bits 2 's complement where appropriate. Show all your works clearly. [8m]
i. $\quad 15+20$
ii. $50-30$
c) A system using even parity received the following ASCII hexadecimal value, CCCF47C9C316 (receives MSB first). By referring the ASCII table given in Appendix (refer Table 1 in Page 12), find the message by completing Table 2. [12m]

Table 2: ASCII to character conversion

Received ASCII data in hex	Received ASCII data in binary	Parity Bit	ASCII in binary	ASCII in Hex	ASCII Character

APPENDIX

Table 1: ASCII Table

Decimal	Hex	ASCII									
0	00	NUL	32	20	(blank)	64	40	@	96	60	
1	01	SOH	33	21	!	65	41	A	97	61	a
2	02	STX	34	22	-	66	42	B	98	62	b
3	03	ETX	35	23	\#	67	43	C	99	63	c
4	04	EOT	36	24	\$	68	44	D	100	64	d
5	05	ENQ	37	25	\%	69	45	E	101	65	e
6	06	ACK	38	26	\&	70	46	F	102	66	f
7	07	BEL	39	27	,	71	47	G	103	67	g
8	08	BS	40	28	(72	48	H	104	68	h
9	09	HT	41	29)	73	49	I	105	69	,
10	0A	LF	42	2A	*	74	4A	J	106	6A	j
11	0B	VT	43	2B	$+$	75	4B	K	107	6B	k
12	OC	FF	44	2C	,	76	4C	L	108	6C	I
13	OD	CR	45	2D	-	77	4D	M	109	6D	m
14	OE	SO	46	2E	.	78	4E	N	110	6E	n
15	OF	SI	47	2F	I	79	4F	\bigcirc	111	6F	0
16	10	DLE	48	30	0	80	50	P	112	70	p
17	11	DC1	49	31	1	81	51	Q	113	71	q
18	12	DC2	50	32	2	82	52	R	114	72	r
19	13	DC3	51	33	3	83	53	S	115	73	s
20	14	DC4	52	34	4	84	54	T	116	74	t
21	15	NAK	53	35	5	85	55	U	117	75	u
22	16	SYN	54	36	6	86	56	V	118	76	v
23	17	ETB	55	37	7	87	57	W	119	77	w
24	18	CAN	56	38	8	88	58	X	120	78	x
25	19	EM	57	39	9	89	59	Y	121	79	y
26	1A	SUB	58	3 A		90	5 A	Z	122	7A	z
27	1B	ESC	59	3B	;	91	5B	[123	7B	\{
28	1 C	FS	60	3C	$<$	92	5 C	1	124	7 C	
29	1D	GS	61	3D	$=$	93	5D]	125	7D	\}
30	1E	RS	62	3E	$>$	94	5E	\wedge	126	7E	\sim
31	1F	US	63	3F	?	95	5F		127	7F	(delete)

| NAME | $:$ | | |
| :--- | :--- | :--- | :--- | :--- |
| STUDENTID | $:$ | | SECTION: |

INSTRUCTIONS: Please answer all questions in the spaces given and show ALL your workings.

1. 2 bytes is equal to how many:
[3m]
a. Nibbles =
b. Words =
c. Bits =
2. Give ONE example of code in the digital systems.
[1m]
3. Convert $\mathbf{9 0 . 3 1 2 5}_{10}$ to
a. Binary =
[4m]
b. Hexadecimal
[2m]
4. Using 8-bits number system, change -24 into its representation of:
a. Sign and magnitude [2m]
b. 1's complement [2m]
c. 2's complement [1m]
5. Using 10-bits 2's complement signed numbers, perform the following operation.
a. $\mathbf{2 4 + 1 6}$
[2m]
b. $-90-16[3 \mathrm{~m}]$

TUTORIAL 2c

1. Please write True [T] or False [F] for the following statements. [6m]

1	The smallest "unit" of data on a binary computer is a single byte	
2	2 Words = 8 nibble	
3	MSB is the leftmost bit.	
4	1001 is an invalid code in BCD	
5	Gray code is used to facilitate error correction in digital communications.	
6	Parity bit is append to the code at the rightmost position (LSB)	

2. Convert the following numbers to its decimal equivalent.
a. FE04 ${ }_{16}[2 \mathrm{~m}]$
b. $7505[2 \mathrm{~m}]$
3. Convert 9000_{10} to following number representations.
a. hexacedimal number. [3m]
b. binary number [1m]
4. Convert 564.45_{10} to following number representations. Give answer to 3 fractional point.
a. binary number. [5m]
b. hexadecimal number [1m]
001000110100.0110

TUTORIAL 2c

5. Convert 2288 to: [1m]
a. BCD
b. Gray Code [2m]

1	0	0	0	1	0	1	0	0	0	1	0	0	0
1	1	0	0	1	1	1	1	0	0	1	1	0	0

6. What is the ASCII binary code for the character ' S ' $\left(53_{\mathrm{H}}\right)$ using odd parity code. [2m]
7. Give reasons why -8 is invalid in the following 4 bits signed number representation:
a. Sign and magnitude [2m]
b. 1's complement [2m]
8. Perform the following operations using 8-bit 2's complement signed number.
a. $24-17[3 \mathrm{~m}]$
b. $-17+24[3 \mathrm{~m}]$
