(1)

TUTORIAL 1

1. Which is NOT an example of analog quantities?
A. Time
C. Energy
B. Pressure
D. Bandwidth
2. A quantity having discrete value is a \qquad quantity.
A. analog
C. continuous
B. digital
D. natural
3. An analog-to-digital converter (ADC) converts \qquad to \qquad .
A. discrete signals, discrete digital numbers
B. continuous signals, discrete digital numbers
C. continuous signals, discrete analog numbers
D. discrete signals, discrete analog numbers
4. Determining the number of passengers in a flight is the function of a \qquad .
A. Comparator
C. Counter
B. Encoder
D. Multiplexer
5. Which statement CORRECTLY describes a COMPARATOR function?
A. Sending multiple inputs to a destination.
B. Converting a key press on a keypad to a BCD function.
C. Determine whether a car exceeds the speed limit.
D. Memorize characters type on a keyboard.
6. Arrange the complexity for fixed-function ICs from largest to smallest.
A. ULSI, VLSI, LSI, MSI, SSI
C. MSI, LSI, SSI, VLSI, ULSI
B. SSI, MSI, LSI, VLSI, ULSI
D. VLSI, LSI, MSI, SSI, ULSI
7. Which statement is NOT the advantage of Programmable Logic Device (PLD)?
A. More logic circuit can be 'stuffed' into much smaller area.
B. Certain PLD design can be changed without rewiring or replacing components.
C. A specific logic function is hardwired in the IC.
D. Can be implemented faster once the required programming language is mastered.
8. Given input \mathbf{m} is 1 and \mathbf{n} is 1 , determine which circuit has a different output, Z.
A

C

B

D

9. Which of the following operation of logic gates is FALSE?
A.

B.

C.

D.

10. Find all the possible values of A and B in the equation, $Z=\bar{A}+\bar{B}$ that makes $\mathrm{Z}=1$.
i. $\quad \mathrm{A}=0, \mathrm{~B}=0$
iii. $\mathrm{A}=1, \mathrm{~B}=0$
ii. $\quad \mathrm{A}=0, \mathrm{~B}=1$
iv. $A=1, B=1$
A. i, ii and iii
C. ii and iv
B. ii and iii
D. ii, iii and iv

(3)

Question 11 [20 Marks]

A digital system with periodic digital waveform has a pulse width, t_{w}, of $25 \mu \mathrm{~s}$ and a period, T, of $150 \mu \mathrm{~s}$.
a) Convert the period to the unit of millisecond (ms). [4m]
b) How many cycles are there in 10 ms ? [4 m]
c) What is the frequency of the system? [4m]
d) Calculate the on and off state of the system in $\mu \mathrm{s}$. [4m]
e) Calculate the duty cycle of the system. [4m]

Question 12 [15 Marks]

a) Given the input waveform A and B in the logic circuit of Figure 1(a), draw the appropriate output waveform for X by filling the Figure 1(b). [9m]

Figure 1(a): Logic circuit
(4)

Figure 1(b): Output waveform of logic circuit in Figure 1(a)
b) Fill in the truth table of Table 3 below based on your answer in Question 12(a). [4m]

Table 3: Truth table

\mathbf{A}	\mathbf{B}	\mathbf{X}
0	0	
0	1	
1	0	
1	1	

c) Which single gate does Table 3 represents? [2m].

