

ASSIGNMENT 1

COURSE NAME: DISCRETE STRUCTURE

COURSE CODE: SECI 1013

SECTION: 03

LECTURER'S NAME: Dr. Nor Azizah Ali

GROUP NUMBER: 7

GROUP MEMBERS:

Name	Matric No.
LUQMAN ARIFF BIN NOOR AZHAR	A20EC0202
TERENCE A/L LOORTHANATHAN	A20EC0165
MADINA SURAYA BINTI ZHARIN	A20EC0203

Let the universal set be the set **R** of all real numbers and let $A = \{x \in \mathbb{R} \mid 0 < x \le 2\}$, $B = \{x \in \mathbb{R} \mid 1 \le x < 4\}$ and $C = \{x \in \mathbb{R} \mid 3 \le x < 9\}$. Find each of the following:

a)
$$A \cup C$$

= $\{x \in \mathbf{R} \mid (0 < x \le 2) \text{ or } (3 \le x < 9)\}$

b)
$$(A \cup B)'$$

= $\{x \in \mathbf{R} \mid \neg((0 < x \le 2) \text{ or } (1 \le x < 4))\}$
= $\{x \in \mathbf{R} \mid x < 0 \text{ or } x > 4\}$

c)
$$A' \cup B'$$

= $\{x \in \mathbf{R} \mid (0 < x \le 2)' \text{ or } (1 \le x < 4)'\}$
= $\{x \in \mathbf{R} \mid x < 1 \text{ or } x > 2\}$

Question 2

Draw Venn diagrams to describe sets *A*, *B*, and *C* that satisfy the given conditions

a)
$$A \cap B = \emptyset$$
, $A \subseteq C$, $C \cap B \neq \emptyset$

b)
$$A \subseteq B$$
, $C \subseteq B$, $A \cap C \neq \emptyset$

c) $A \cap B \neq \emptyset$, $B \cap C \neq \emptyset$, $A \cap C = \emptyset$, $A \not\subset B$, $C \not\subset B$

Question 3

Given two relations S and T from A to B, $S \cap T = \{(x,y) \in A \times B | (x,y) \in S$ and $(x,y) \in T\}$ $S \cup T = \{(x,y) \in A \times B | (x,y) \in S$ or $(x,y) \in T\}$

Let $A = \{-1, 1, 2, 4\}$ and $B = \{1,2\}$ and defined binary relations S and T from A to B as follows:

For all $(x,y) \in A \times B$, $x S y \leftrightarrow |x| = |y|$

For all $(x,y) \in A \times B$, $x T y \leftrightarrow x - y$ is even

State explicitly which ordered pairs are in $A \times B$, S, T, $S \cap T$, and $S \cup T$.

Solution:

$$S = \{ (-1,1), (1,1), (2,2) \}$$

$$T = \{ (4,2), (2,1), (1,1), (2,2) \}$$

$$S \cap T = \{ (1,1), (2,2) \}$$

$$S \cup T = \{ (-1,1), (1,1), (2,2), (4,2), (2,1) \}$$

$$A \times B = \{ (-1,1), (-1,2), (1,1), (1,2), (2,2), (2,1), (4,1), (4,2) \}$$

Show that $\neg ((\neg p \land q) \lor (\neg p \land \neg q)) \lor (p \land q) \equiv p$. State carefully which of the laws are used at each stage.

Solution:

Right side:

$$= \neg ((\neg p \land q) \lor (\neg p \land \neg q)) \lor (p \land q)$$
 [Distributive Law]

$$= \neg (\neg p \land (q \lor \neg q)) \lor (p \land q)$$
 [Negation Law]

$$= \neg (\neg p \land (T)) \lor (p \land q)$$
 [De Morgan's Law]

$$= (p \lor F) \lor (p \land q)$$
 [Identity Law]

$$= p \lor (p \land q)$$
 [Absorption Law]

$$= p$$

Question 5

 $R_1 = \{(x, y) \mid x + y \le 6\}; R_1 \text{ is from X to Y}; R_2 = \{(y, z) \mid y > z\}; R_2 \text{ is from Y to Z}; ordering of X, Y, and Z: 1, 2, 3, 4, 5. Find:$

a) The matrix A₁ of the relation R₁ (relative to the given orderings)

$$A_{1} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 1 & 1 & 1 & 1 \\ 3 & 4 & 1 & 1 & 1 & 0 \\ 4 & 5 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

b) The matrix A_2 of the relation R_2 (relative to the given orderings)

$$A_2 = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 1 & 0 & 0 & 0 & 0 \\ 3 & 1 & 0 & 0 & 0 & 0 \\ 4 & 1 & 1 & 0 & 0 & 0 \\ 5 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

- c) Is R_1 reflexive, symmetric, transitive, and/or an equivalence relation?
 - R_1 is not reflexive as the diagonal of matrix not all 1 or $\nabla x \in R$, $(x, x) \notin R_1$.
 - R_1 is not transitive as $A_1 \otimes A_1 \neq A_1$
 - ullet R₁ is not an equivalence relation as it is only symmetric but not reflexive and not transitive.
 - R_1 is a symmetric relation as $\nabla x, y \in R$, $(x, y) \in R_1 \to (y, x) \in R_1$.
- d) Is R_2 reflexive, antisymmetric, transitive, and/or a partial order relation?
 - R_2 is not reflexive as the diagonal of matrix not all 1 or $\nabla x \in R$, $(x, x) \notin R_2$.
 - R_2 is not transitive as $A_2 \otimes A_2 \neq A_2$
 - ullet R₂ is not partial order relation as it is only antisymmetric but not reflexive and not transitive.
 - R_2 is an antisymmetric relation as $\nabla x, y \in R, (x, y) \in R_2 \rightarrow (y, x) \notin R_2 \rightarrow x \neq y$.

Suppose that the matrix of relation R1 on $\{1, 2, 3\}$ is

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

relative to the ordering 1, 2, 3, and that the matrix of relation R2 on $\{1, 2, 3\}$ is

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

relative to the ordering 1, 2, 3. Find:

a) The matrix of relation $R1 \cup R2$ Solution:

$$= R1 \cup R2$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \cup \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

b) The matrix of relation $R1 \cap R2$

$$= R1 \cap R2$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \cap \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

If $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are both one-to-one, is f + g also one-to-one? Justify your answer.

Solution

Assume
$$f(x) = 4x - 1$$
 and $g(x) = x + 3$

$$(f+g)(x) = (4x-1) + (x+3)$$

$$= 5x - 2$$

Let
$$(f + g)(x_1) = (f + g)(x_2)$$
, then

$$5x_1 - 2 = 5x_2 - 2$$

Then,
$$5x_1 = 5x_2$$

Therefore $x_1 = x_2$ proves (f + g)(x) is a one-to-one function

Ouestion 8

With each step you take when climbing a staircase, you can move up either one stair or two stairs. As a result, you can climb the entire staircase taking one stair at a time, taking two at a time, or taking a combination of one- or two-stair increments. For each integer $n \ge 1$, if the staircase consists of n stairs, let cn be the number of different ways to climb the staircase. Find a recurrence relation for c1, c2, ..., cn.

Solution:

$$n = stairs \quad (n \ge 1)$$

 $c_n = number of different ways to climb the staircase$

If
$$n = 1$$
, $c_1 = 1$ = [(1)]
If $n = 2$, $c_2 = 2$ = [(1,1), (2)]
If $n = 3$, $c_3 = 3$ = [(1,1,1), (1,2), (2,1)]

If
$$n = 4$$
, $c_4 = 5$
$$= [(1,1,1,1), (1,1,2), (1,2,1), (2,1,1), (2,2)]$$
If $n = 5$, $c_5 = 8$
$$= [(1,1,1,1), (1,1,1,2), (1,1,2,1), (1,2,1,1), (2,1,1,1), (1,2,2), (2,1,2), (2,2,1)]$$
If $n = 6$, $c_6 = ?$

Notice that every c_n is fixed for every n $\ [where \ (n \geq 1)]$, and every first step taken it can only be

taken in two forms either 1 step or 2 steps. If, one step is taken as a first step then n=n-1 staircases are left to climb and if two steps are taken as first steps then n=n-1 staircases are left to climb. Therefore the \mathbf{c}_n also will be relatively reduced. For example, n=4 if one step is taken as the first step there will be 3 staircases left to climb and if 2 steps are taken as first there will be 2 staircases left to climb. So, the summation of ways to climb the 3 staircases if one step is taken as first step and the ways to climb the 2 staircases if two steps are taken as first is the number of ways to climb n=4 staircases.

So, in conclusion we can see that c_n depends on the summation of its previous two c_n . Therefore, the recurrence relation which is a <u>Fibonacci sequence</u> is:

$$c_n = c_{n-1} + c_{n-2}$$
, for $n > 2$ [Where, $c_1 = 1, c_2 = 2$]

Therefore,
$$c_6 = c_5 + c_4$$

 $c_6 = 8 + 5 = 13 \text{ ways}$

The Tribonacci sequence (t $_n$) is defined by the equations, $t_0=0$, $t_1=t_2=1$, $t_n=t_{n-1}+t_{n-1}+t_{n-1}+t_{n-1}+t_{n-1}+t_{n-1}$ for all $n\geq 3$.

a) Find t₇.

$$t_7 = t_{7-1} + t_{7-2} + t_{7-3}$$

$$= t_6 + t_5 + t_4$$

$$= 13 + 7 + 4$$

$$= 24$$

b) Write a recursive algorithm to compute t_n , $n \ge 3$.

```
f(n) \\ \{ \\ if (n = 1) \text{ or } (n = 2) \\ return 1 \\ return f (n - 1) + f (n - 2) + f (n - 3) \\ \}
```