
10: EXCEPTIONS AND
TEMPLATES

Programming Technique II

(SCSJ1023)

Adapted from Tony Gaddis and Barret Krupnow (2016), Starting out with
C++: From Control Structures through Objects

Exceptions

Introduction to Exceptions

 Indicate that something unexpected has occurred or been
detected.

 Allow program to deal with the problem in a controlled
manner.

 Can be as simple or complex as program design requires.

Terminology

 Exception: object or value that signals an error 
exceptional circumstance  run-time errors.

 Throw an exception: send a signal that an error has
occurred.

 Catch/ Handle an exception: process the exception;
interpret the signal.

Keywords

 throw: send a signal that an error has occurred.

 try: followed by a block {}, is used to invoke code that
throws an exception.

 catch: followed by a block {}, is used to detect and
process exceptions thrown in preceding try block. Takes a
parameter that matches the type thrown.

Flow of Control

 A function that throws an exception is called from within a
try block.

 If the function throws an exception:

 The function terminates and the try block is immediately
exited.

 A catch block to process the exception is searched for in the
source code immediately following the try block.

 If a catch block is found that matches the exception
thrown, it is executed. If no catch block that matches the
exception is found, the program terminates.

Example 1a: Using throw

//Function that throws an exception

int totalDays(int days, int weeks)

{

if ((days < 0) || (days > 7))

throw “Invalid number of days!";

//the argument to throw is a literal c-string

else

return (7 * weeks + days);

}

Example 1b: Using try…catch
int main(){

int totDays,days, weeks;

cout << "Enter no. of. days and no. of. weeks =>";

cin >> days >> weeks;

try{

totDays = totalDays(days, weeks);

cout << "Total days: " << totDays;

}

catch (const char *msg){

cout << "Error: " << msg;

}

return 0;

}

//code in the try-block is called protected code

//code in the catch-block is called exception handler

Correction:

catch (const char *msg)

Example 1: What Happens?

 try block is entered. totalDays function is called to.

 If 1st parameter is between 0 and 7, total number of days is
returned and catch block is skipped over (no exception
thrown).

 If exception is thrown, function and try block are exited,
catch blocks are scanned for 1st one that matches the data
type of the thrown exception. catch block executes.

Additional Notes:

Dealing with string exceptions

 You can throw different types of string exceptions.
 A literal string

 C string

 C++ string

Throwing a literal
c-string

Throwing a c-string
variable

Throwing a string
object (c++ string)

 Then, catch the exceptions accordingly

Catching a literal c-
string exception

Additional Notes:

Dealing with string exceptions

Catching a c-string
exception

Catching a c++
string exception

Example 2a: Using try…catch

Correction:

catch (const char *exceptionString)

Example 2b: Using throw

Example 2: What Happens in the
try…catch Construct?

Correction:

catch (const char
*exceptionString)

Example 2: What Happens if No
Exception is Thrown?

Correction:

catch (const char
*exceptionString)

Exception Not Caught?

 An exception will not be caught if
 it is thrown from outside of a try block

 there is no catch block that matches the data type of the thrown
exception

 If an exception is not caught, the program will terminate.

Exceptions and Objects

 An exception class can be defined in a class and thrown as an
exception by a member function.

An exception class may have:
 no members: used only to signal an error

 members: pass error data to catch block.

 A class can have more than one exception class.

Ex
am

p
le

 3
a

Ex
am

p
le

 3
b

Ex
am

p
le

 3
c

Ex
am

p
le

 3
d

:
Sa

m
p

le
 O

u
tp

u
t

Additional Notes:

C++ Built-in Exception Classes

Source:
https://www.tutorialspoint.com/cplusplus/cpp_exceptions_handling.htm

Example

An exception of bad_alloc

will be thrown by the
command new when there is

not enough memory left.

Example (continued)

An exception of
bad_alloc was caught

 An exception class can also be defined outside of a class by extending the

built-in classes e.g., the class exception

Additional Notes:

Creating a New Exception Class by Extending the
class exception

Source:
http://www.cplusplus.com/doc/tutorial/exceptions/

Members of the class

exception

Example

Creating a new exception

class by extending the class
exception

Then , catching exceptions
is done as usual

Function Templates

Introduction

 Function template: a pattern for a function that can work
with many data types.

When written, parameters are left for the data types.

When called, compiler generates code for specific data types
in function call.

Example 4a

template <class T>

T times10(T num)

{

return 10 * num;

}

What gets generated when
times10 is called with an int:

What gets generated when
times10 is called with a double:

int times10(int num)

{

return 10 * num;

}

double times10(double num)

{

return 10 * num;

}

Template prefix

Generic type

Type parameter

Example 4b

template <class T>

T times10(T num)

{

return 10 * num;

}

Call a template function in the usual manner:
int ival = 3;

double dval = 2.55;

cout << times10(ival); // displays 30

cout << times10(dval); // displays 25.5

Notes 1

template <class T>

T sumAll(T num) ...

template <class T1, class T2>

T1 sumall(T1 num1, T2 num2) ...

 Function templates can be overloaded.

 Each template must have a unique parameter list.

Notes 2

 All data types specified in template prefix must be used in
template definition.

 Function calls must pass parameters for all data types
specified in the template prefix.

 Like regular functions, function templates must be defined
before being called.

Where to Start
When Defining Templates

 Templates are often appropriate for multiple functions that
perform the same task with different parameter data types.

Develop function using usual data types first, then
convert to a template:
 add template prefix

 convert data type names in the function to a type
parameter (i.e., a T type) in the template.

Class Templates

Introduction

 Classes can also be represented by templates.

When a class object is created, type information is supplied
to define the type of data members of the class.

 Unlike functions, classes are instantiated by supplying the
type name (int, double , string , etc.) at object
definition.

Example 5a

template <class T>

class Grade

{

private:

T score;

public:

Grade(T);

void setGrade(T);

T getGrade()

};

Example 5b

• Pass type information to class template when
defining objects:

Grade<int> testList[20];

Grade<double> quizList[20];

• Use as ordinary objects once defined

