10: EXCEPTIONS AND
TEMPLATES

Programming Technique |l
(SCSJ1023)

Adapted from Tony Gaddis and Barret Krupnow (2016), Starting out with
C++: From Control Structures through Objects

@ UNIVERSITI TEKNOLOGI MALAYSIA

Exceptions

innovative e entrepreneurial e global www.utm.my

Introduction to Exceptions

Indicate that something unexpected has occurred or been
detected.

Allow program to deal with the problem in a controlled
manner.

Can be as simple or complex as program design requires.

innovative e entrepreneurial e global www.utm.my

Terminology

Exception: object or value that signals an error =
exceptional circumstance = run-time errors.

Throw an exception: send a signal that an error has
occurred.

Catch/ Handle an exception: process the exception;
interpret the signal.

innovative e entrepreneurial e global www.utm.my

Keywords

throw: send a signal that an error has occurred.

try: followed by a block { }, is used to invoke code that
throws an exception.

catch: followed by a block { }, is used to detect and
process exceptions thrown in preceding try block. Takes a
parameter that matches the type thrown.

innovative e entrepreneurial e global www.utm.my

Flow of Control

A function that throws an exception is called from within a
try block.

If the function throws an exception:

¢ The function terminates and the try block is immediately
exited.

¢ A catch block to process the exception is searched for in the
source code immediately following the try block.

If a catch block is found that matches the exception
thrown, it is executed. If no catch block that matches the
exception is found, the program terminates.

innovative e entrepreneurial e global www.utm.my

IIIIIIIIIIIIIIIIIIIIIIIIIII

7~ Example 1la: Using throw

//Function that throws an exception
int totalDays(int days, int weeks)
{
if ((days < 0) || (days > 7))
throw “Invalid number of days!";
//the argument to throw is a literal c-string
else
return (7 * weeks + days);

innovative e entrepreneurial e global www.utm.my

; 5’ UNIVERSITI TEKNOLOGI MALAVS/

/“E)kample 1b: Using try..catch

int main|() {
int totDays,days, weeks;

cout << "Enter no. of. days and no. of. weeks =>";
cin >> days >> weeks;

try{
totDays = totalDays (days, weeks);
cout << "Total days: " << totDays;
}
catch (const char *msg){<<__z//’\\\\\\cmﬂmmom
t << "E RS ;
) cot rrox nsg catch (const char *msgQ)

return 0;

}
//code in the try-block is called protected code
//code in the catch-block is called exception handler

innovative e entrepreneurial e global www.utm.my

Example 1: What Happens?

try block is entered. totalDays function is called to.

If 15t parameter is between 0 and 7, total number of days is
returned and catch block is skipped over (no exception

thrown).

If exception is thrown, function and try block are exited,
catch blocks are scanned for 15t one that matches the data
type of the thrown exception. catch block executes.

innovative e entrepreneurial e global www.utm.my

@UTM Additional Notes:
Dealing with string exceptions

You can throw different types of string exceptions.

¢ Aliteral string
¢ Cstring
¢ C++ string

int choice;
cout << "Enter choice => ";
cin >> choice;

try {
if (choice == 1)

throw "This is a const c-string"”; Throwing a literal

c-string
if (choice == 2){

char cStr[] = "This is a c-string”; : :
throw cStr; Throwing a c-string

) variable

it (choice==3){
string cppStr="This is a cpp-string”;
throw cppStr; Throwing a string
object (c++ string)

innovative e entrepreneurial e global www.utm.my

@UTMM/ Additional Notes:

/-—/ Dealing with string exceptions

Then, catch the exceptions accordingly

Catching a literal c-
string exception

atch (char *msg){ Catching a c-string
" exception
cout << "Caught msg:
h (string msg){ Catching a c++
cout << "Caught msg: " << msg; string exception

innovative e entrepreneurial e global www.utm.my

@ UNIVERSITI TEKNOLOGI MALAYSIA

7~ txample 2a: Using try..catch

int main()

{

int numl, num2: // To hold two numbers
double quotient; // To hold the quotient of the numbers

/S Get two numbers.
cout << "Enter two numbers:
cin »> numl >> num2;

-

// Divide numl by num2 and catch any
// potential exceptions.
try

{
quotient = divide(numl, num2);
cout =< "The quotient is " << guotient << endl;
t

catch (char *exceptionString)

1 . . catch (const char *exceptionString)
COoOut << except:.-::-nﬁtrlng; —

Correction:

b

cout << "End of the program.'\n";
return 0:

innovative e entrepreneurial e global www.utm.my

7~ Example 2b: Using throw

I.-"_..-'***ir******'.lr*********************************
// The divide function divides numerator by *#

// denominator. If denominator is zero, the *

// function throws an exXception. *
I.-"_,.-'irfr*****irfr*******1':************************#**

double divide(int numerator, int denominator)

{
if (denominator == 0)
throw "ERROR: Cannot divide by zero.\n";
return static cast<double>(numerator) / dencminator;
}

Program Output with Example Input Shown in Bold

Enter two numbers: 12 2 [Enter]
The quotient is &
End of the program.

Program Output with Example Input Shown in Bold

Enter two numbers: 12 0 [Enter]
ERROR: Cannot divide by zero.

End of the program.

innovative e entrepreneurial e global www.utm.my

@ UNIVERSITI TEKNOLOGI MALAYSIA

Example 2: What Happens in the
try..catch Construct?

try
{
——— quotient = divide(numl, num2);
__then this statement ——® cout << "The quotient is " << quotient << endl;

If this statement
throws an exception...

' ' } :

o SRR catch (char *exceptionString) CEIEGHTE
If the exception is a string, { catch (const char
the program jumps to cout << exceptionString; *exceptionString)
this catch clause. }

Aft.erthe catch block is —— cout << "End of the program.\n";
finished, the program
return 0;

resumes here.

innovative e entrepreneurial e global www.utm.my

@ UNIVERSITI TEKNOLOGI uauvs/

4 Example 2: What Happens if No
Exception is Thrown?

try
{
quotient = divide(numl, num2);
cout << "The quotient is " << quotient << endl;
: Correction:
catch (char *exceptionString) ;
If no exception is thrown in the { catch (const char
try block, the program jumps cout << exceptionString; *exceptionString)
to the statement that immediately } P 9
follows the try/catch construct.
L cout << "End of the program.\n";

return 0;

www.utm.my

innovative e entrepreneurial e global

Exception Not Caught?

& An exception will not be caught if
¢ itis thrown from outside of a trvy block

¢ there is no catch block that matches the data type of the thrown
exception

If an exception is not caught, the program will terminate.

innovative e entrepreneurial e global www.utm.my

T Exceptions and Objects

An exception class can be defined in a class and thrown as an
exception by a member function.

& An exception class may have:
¢ no members: used only to signal an error
¢ members: pass error data to catch block.

A class can have more than one exception class.

innovative e entrepreneurial e global www.utm.my

Contents of Rectangle.h (Version 1)

// Specification file for the Rectangle class

tifndef RECTANGLE H
tdefine RECTANGLE H

@ UNIVERSITI TEKNOLOGI MALAYSIA

class Rectangle

{
private:
double width; // The rectangle's width
doulkle length; // The rectangle's length
public:

// Exception class
class NegativeSize
{ }: // Empty class declaration

f7/ Default constructor

Rectangle ()
{ width = 0.0; length = 0.0; }

// Mutator functicns, defined in Rectangle.cpp
vold setWidth(double);
vold setLength(double);

®
o
9
Q.
£
®
>
"

Jf Bceessor functions
double getWidth() const
{ return width; 1}

double getlLength{) const
{ return length; }

double getlrea() const
{ return width * length; }

r
www.utm.my

innovative e entrepreneurial e global

UNIVERSITI TEKNOLOGI MALAYSIA

Contents of Rectangle.cpp (Version 1)

/f Implementation file for the Rectangle class.
tinclude "Rectangle.h"

l,-"_,."*****#****ﬂ'*#***tfrfr#***ﬂ'frﬂ'1':********#***#******#***t**#***t*

/f setWidth sets the wvalue of the member variable width. *
l,-".,."****'.'r**

voild Rectangle::setWidth(double w)
{
if (w = 0)
width = w:
elge
throw MNegativeSize();

INEEEE S22 Rt Rt R s R R A R R R AR R sl Rt R

// setLength sets the wvalue of the member wariable length. *
.-"._-'"***

vold Rectangle::setlLength(double len)
{

Example 3b

if {len == 0)
length = len;

els

throw NegativeSize();

innovative e entrepreneurial e global www.utm.my

Program 16-2

UNIVERSITI TEKNOLOGI MALAYSIA

/¢ This program demonstrates Rectangle class exceptions.
¢include <iostreams

¢include "Rectangle.h"

using namespace std;

int main()

{
int width:
int length;

/{ Create a Rectangle object.
Eectangle myRectangle;

/f Get the width and length.

cout << "Enter the rectangle's width: ";
cin => width;

cout =< "Enter the rectangle's length: ";
cin »»> length;

/{ Store these wvalues in the Rectangle object.
try
{

myRectangle.setWidth(width);

myRectangle.setLength(length);

cout << "The area of the rectangle is
<< myRectangle.dgetlfrea() << endl;

O
™
9

o

£

©

-~
"

}

catch (Rectangle::NegativeSize)

{

cout << "Error: A negative walue was entered.\n";

h
cout << "End of the program.\n";

return 03

innovative e entrepreneurial e global www.utm.my

@ UNIVERSITI TEKNOLOGI MALAYSIA

Program Output with Example Input Shown in Bold

Enter the rectangle's width: 10 [Enter]
Enter the rectangle's length: 20 [Enter]
The area of the rectangle is 200

End of the program.

Program Output with Example Input Shown in Bold

Enter the rectangle's width: 5 [Enter]
Enter the rectangle's length: -5 [Enter]
Error: A negative value was entered.
End of the program.

Example 3d
Sample Output

innovative e entrepreneurial e global www.utm.my

Additional Notes:
C++ Built-in Exception Classes

@ UNIVERSITI TEKNOLOGI MALAYSIA

-> std:exception

std:bad_alloc std:domain_error
std:bad_cast std:invalid_argument
std:bad_typeid std:length_error
std:bad_exception std:out_of_range
std:logic_failure |(ef=——
std:overflow_error

std:runtime_error P—

std:range_error

std:underflow_error

Source:
https://www.tutorialspoint.com/cplusplus/cpp_exceptions_handling.htm

innovative e entrepreneurial e global www.utm.my

@ UNIVERSITI TEKNOLOGI MALAYSIA

7 int main ()

8 {

9 double *p; An exception of bad alloc
1@ int count = @; will be thrown by the

11 int size = pow(2,20); // 1M command new when there is
12 not enough memory left.
13% try{

14 = E while (true){

15 é é p = new double[size];

16 E E count++;

17 E E cout << "Count=" << count << endl;

18 }

19 }

28 [catch (exception& e){

21 E cout << "Something bad happened!!!" << e.what() << endl;
22 + }

23

24 Ereturn i

25 L 3}

25

innovative e entrepreneurial e global www.utm.my

Count=1742
Count=1743
ECount=1744
RCount=1745
Count=1746
Count=1747
Count=1748
Count=1/749
Count=1/758
Count=1/751

BCount=1752 An exception of
Count=1753 bad alloc was caught
Count=1754

Count=1755
Something bad happened!!!std::bad alloc

innovative e entrepreneurial e global www.utm.my

Additional Notes:
reating a New Exception Class by Extending the
class exception

UUUUUUUUUUUUUUUUUUUUU

An exception class can also be defined outside of a class by extending the

built-in classes e.g., the class @xception

Members of the class
class exception { exception
public:
exception () throw();
exception (const exception&) throw();
exception& operator= (const exception&) throw();
virtual ~exception()} throw();
virtual const char* what{) const throw();

L Pud ==

[[=

Source:
http://www.cplusplus.com/doc/tutorial/exceptions/

innovative e entrepreneurial e global www.utm.my

@ UNIVERSITI TEKNOLOGI MALAYSIA

1
2
3
a
5

Creating a new exception

#include <iostream:
#include <exception>
using namespace std;

exception

6 eclass DivideByZero:public exception{

7

8=

9
18
11
12

134

14
15
16
17
18
19

a

28

pub11c
const char* what() const throw() {
5 return "division by zero"
}

}s

double divide(double a, double b){
DivideBylero e;
double c;
1f (b == @)

throw e; // or simply call directly to the constructor,

return a/b;

__-"r-__-"r- t h PO

class by extending the class

DivideByZero()

innovative e entrepreneurial e global

www.utm.my

@ UNIVERSITI TEKNOLOGI MALAYSIA

21 int main () Then , catching exceptions

220 { Is done as usual
23 double a, b, c;

24

25

26 cout << "Enter two numbers => ";

27 cin »> a »> b;

28

29[try{

30 § c = divide(a,b);

31 cout << "Divide " << a << " by " << b << " is " << ¢ << endl;
32 }

33 catch (exception& e){ // make sure to use &, to ensure polymorphism functions
34 § cout << "Semething bad happened!!!" << e.what() << endl;

35 | 1

36 §

37 return 8;

38 L}

Tl

innovative e entrepreneurial e global www.utm.my

Function Templates

Introduction

Function template: a pattern for a function that can work
with many data types.

When written, parameters are left for the data types.

When called, compiler generates code for specific data types
in function call.

innovative e entrepreneurial e global www.utm.my

IIIIIIIIIIIIIIIIIIIIIIIIII

7 | Example 4a

template <class T>+ Template prefix

T timeslO(T num) ——

{ Generic type
return ‘m Type parameter

}
What gets generated when What gets generated when
times10 is called with an int: | timesl10 is called with a double:
int timesl0 (int num) double timeslO (double num)
{ {
return 10 * num; return 10 * num;

} }

innovative e entrepreneurial e global www.utm.my

IIIIIIIIIIIIIIIIIIIIIIIII

7 Example 4b

template <class T>

T timeslO (T num)
{

return 10 * num;

Call a template function in the usual manner:
int ival = 3;
double dval = 2.55;
cout << timeslO(ival); // displays 30
cout << timeslO(dval); // displays 25.5

innovative e entrepreneurial e global www.utm.my

Notes 1

Function templates can be overloaded.

Each template must have a unique parameter list.

template <class T>

T sumAll (T num)

template <class T1l, class T2>
Tl sumall (Tl numl, T2 num2)

innovative e entrepreneurial e global

Notes 2

All data types specified in template prefix must be used in
template definition.

Function calls must pass parameters for all data types
specified in the template prefix.

Like regular functions, function templates must be defined
before being called.

innovative e entrepreneurial e global www.utm.my

Where to Start
When Defining Templates

Templates are often appropriate for multiple functions that
perform the same task with different parameter data types.

Develop function using usual data types first, then
convert to a template:
¢ add template prefix

¢ convert data type names in the function to a type
parameter (i.e., a T type) in the template.

innovative e entrepreneurial e global www.utm.my

Class Templates

Introduction

Classes can also be represented by templates.

When a class object is created, type information is supplied
to define the type of data members of the class.

Unlike functions, classes are instantiated by supplying the
type name (int, double, string, etc.) at object
definition.

innovative e entrepreneurial e global www.utm.my

IIIIIIIIIIIIIIIIIIIIIIIIII

P Example 5a

template <class T>
class Grade
{
private:
T score;
public:
Grade (T) ;
void setGrade (T) ;
T getGrade ()

innovative e entrepreneurial e global www.utm.my

IIIIIIIIIIIIIIIIIIIIIIIII

P Example 5b

e Pass type information to class template when
defining objects:

Grade<int> testList[20];
Grade<double> quizList[20];

* Use as ordinary objects once defined

innovative e entrepreneurial e global www.utm.my

