08: INHERITANCE

Programming Technique |l
(SCSJ1023)

Adapted from Tony Gaddis and Barret Krupnow (2016), Starting out with
C++: From Control Structures through Objects

innovative e entrepreneurial e global www.utm.my




IIIIIIIIIIIIIIIIIIIIIIIII

8.1: Introduction to Inheritance




What is Inheritance?

Inheritance provides a way to create a new class from an
existing class.

The new class is a specialized version of the existing class.

Classes organised into a ‘classification hierarchy’.

Classes can inherit attributes and methods from other
classes, and add extra attributes and methods of its own.

innovative e entrepreneurial e global www.utm.my



What is the Purpose of Inheritance?

Generalisation: sharing commonality between two or more
classes

Specialisation: Extending the functionality of an existing class

innovative e entrepreneurial e global



To be included ....

Generalisation: also applies in Encapsulation. A class is a
generalization of objects sharing the :
However each object has . For example, all
students have the same structure, e.g. each of them has a
name. Thus student is the class. However, each student has
their unique name. e.g. “Ali”. Thus student “Ali” is an object

& Specialisation: Objects are specific entities from the same
class but with their

innovative e entrepreneurial e global



@ UNIVERSITI TEKNOLOGI MALAYSIA

Generalisation: Insect represents all
of the generic attributes and methods
shared by the Bee and Grasshopper.
Both Bee and Grasshopper are Insect.

Example: Insects

/
|
\

Insect

N\ Allinsects have
/.’ certain characteristics.

Specialisation: Bee is a specialized
version of Insect, which is different
from Grasshopper.

In addition to the common
insect characteristics, the
bumble bee has its own unique
characteristics such as the
ability to sting.

Specialisation:
‘ Grasshopper is another

> /; R\ specialized version of
0 1 vel
/ \h\‘» \“~~ \ ' Insect, which is
’M ool ¥ /" different from Bee.

In addition to the common
insect characteristics, the
grasshopper has its own unique
characteristics such as the
ability to jump.

www.utm.my

innovative e entrepreneurial e global



Terminology

Base class or parent class or super class — A class from which another
class inherits.

Derived class or child class or subclass — A class which inherits some of its
attributes and methods from another class.

The base class represents general characteristics shared by the derived
classes.

Inheritance establishes an "is a" relationship between classes.

innovative e entrepreneurial e global www.utm.my



@ UNIVERSITI TEKNOLOGI MALAYSIA

Vehicle represents all - Vehicle is the
of the generic attributes Vehicle parent class.
and methods of a +

vehicle.

“is-a” relationship

Car and Truck are Car Truck Car and Truck are
Specialized versions of child classes of

a Vehicle. Vehicle.

innovative e entrepreneurial e global

www.utm.my



Example:
¢ A beeis an insect. A grasshopper is also an insect.
¢ Insect is the base class. Bee and Grasshopper are the derived classes.

Insect represents all Insect is the
of the generic attributes Insect parent class.
and methods of any
insect.
“1s-a” relationship
B d Grassh
ee and Grasshopper are G rasshopper (I:Br(laiel,\dagldaSGS;eslsg?opper are

Specialized versions of
an Insect.

I Insect.

www.utm.my

innovative e entrepreneurial e global



Example:

¢ A student can be an undergraduate or a postgraduate student.

¢ The base class is Student, and the derived classes are Undergraduate and
Postgraduate.

Student

A

Undergraduate Postgraduate
o

R

innovative e entrepreneurial e global www.utm.my



@UTM Notations

//base class

Student class Student
{
UML
notation for };
inheritance
\\\//—$w+
C++ code for
inheritance
Undergraduate Postgraduate // derived classes
class Undergraduate:public Student
{
};

class Postgraduate : public Student
{
}i

innovative e entrepreneurial e global www.utm.my



What Does a Child Have?

& An object of the derived class has:

¢ all members defined in child class

¢ all members declared in parent class

An object of the derived class can use (or access to):
¢ all public members defined in child class

¢ all public members defined in parent class

innovative e entrepreneurial e global www.utm.my



IIIIIIIIIIIIIIIIIIIIIIIII

8.2: Protected Members and Class Access

www.utm.my



Protected Members and Class Access

& protected member access specification: like private,
but accessible by derived classes.

¢ Only the derived classes can access to protected members in the
base class, but not their objects.

Class access specification: determines how private,
protected, and public members of base class are
inherited by the derived class.

innovative e entrepreneurial e global www.utm.my



Access Specifiers

public — object of derived class can be treated as object of
base class (not vice-versa)

protected— more restrictive than public, but allows
derived classes to know details of parents

private — prevents objects of derived class from being
treated as objects of base class.

innovative e entrepreneurial e global



Inheritance vs. Class Access Specifiers

Member accessibility can be specified at two area:
¢ Inside each class. (called Class Access Specifier)

¢ When a derived class extends the base class (called Inheritance
Specifier).

Inheritance specifier controls
how a child class (and its
objects) accesses to members in
the parent class.

Parent

1

e

Class access specifier
controls accessibility
to members for each
class.

Childl

Child2

www.utm.my

innovative e entrepreneurial e global



IIIIIIIIIIIIIIIIIIIIIIIIII

/-»4 Inheritance vs. Class Access Specifiers

Example:
Class access
class Student specifier
{ private:
string name;
string program;
public: «
Student () ; Inheritance
specifier

};
class Undergraduate: public Student

{
};

innovative e entrepreneurial e global www.utm.my



@ UNIVERSITI TEKNOLOGI MALAYS

ﬁ%\eritance vs. Class Access Specifiers

How inherited base class

members
Base class members appear in derived class
private: x tf)arslevcall;ses x is inaccessible
protected: Y > private Y/
public: z private: z
private: x protected % is inaccessible
protected: y base class » protected: y
public: z protected: z
private: x bpubllic x is inaccessible
ase class

protected: y protected: y
public: z public: z

A 4

innovative e entrepreneurial e global www.utm.my



Accessibility vs. Ownerships

An object owns all members from the class it was created
from, regardless of private, public orprotected.

However, the object can only access to the public
members.

A class can access all its own members.

innovative e entrepreneurial e global www.utm.my



UNIVERSITI TEKNOLOGI MALAYSIA

Accessibility vs. Ownerships

Example: 17H class Undergraduate: public Student{
. 18 private:
Ownership 19 double cgpa;
20
1l class Student{ 21 public:
2 private: 22 Undergraduate(){
3 string name; 23
4 string program; e
5 24 = }
6 public: 25
70 Student(){ 26 H void read(){
8
27 e
12 - } 28 }
115 void print() const{ 29 = );
12 cout << "Name: " << name << endl; 30
13 cout << "Program: " << program << endl; 31| Student s;
14 } 32 \ Undergraduate u;
155=);
33
Student
Undergraduate v 4 v v v
Object s v v v - -
Object u 4 4 v v v

innovative e entrepreneurial e global www.utm.my




UNIVERSITI TEKNOLOGI MALAYSIA

Accessibility vs. Ownerships

17H class Undergraduate: public Student{

Exa m p I e: 18 private:
Accessibility o4 el
20

1 class Student{ 21 public:

2 private: 22H Undergraduate(){

3 string name; 23 R

4 string program; 24 | }

° 25

6 public: .

78 Student(){ 26[_:] void r‘ead(){

8 ceen 27 s nia

9 | } 28 }

10 29 L }.

115 void print() const{ 30 }s

12 cout << "Name: " << name << endl;

13 cout << "Program: " << program << endl; 31 Student s;

14 } 32 \ Undergraduate u;

15 “ }; 33
T i Lo L)
Student
Undergraduate - - v v v
Object s - - v - -
Object u - - v - v

innovative e entrepreneurial e global www.utm.my




Accessibility vs. Ownerships

It is a good idea to specify data members as protected
rather than private.

¢ Thus, child classes can directly access to them,

¢ while the objects still cannot access to them, i.e., the concept of
data hiding remains.

& Inheritance access specifier is commonly specified as
public.

innovative e entrepreneurial e global



@ UNIVERSITI TEKNOLOGI MALAYSIA

Accessibility vs. Ownerships

. 17 class Undergraduate: public Student{
Example: 18
19 double cgpa;
1H class Student{ 20
2 protected:| 21 public:
3 String namej 22 Undergraduate(){
4 string program; 23 hene
5
6 public: 24 }
78 Student(){ 25
8 26 void read(){
9r } 27 p—
0 28 }
L= void print() const{ 29 L };
2 cout << "Name: " << name << endl; 30
i I . cout << "Program: << program << endl; 31 Student s;
5 Ly; 32 Undergraduate u;

- -

_MM

Accessibility  stugent
Undergraduate v v v v v
Object s - - v - -
Object u - - v - v

innovative e entrepreneurial e global www.utm.my




IIIIIIIIIIIIIIIIIIIIIIIII

8.3: Constructors and Destructors in Base and
Derived Classes

innovative e entrepreneurial e global www.utm.my



Constructors and Destructors in Base and
Derived Classes

Derived classes can have their own constructors and
destructors

When an object of a derived class is created, the base class’s
constructor is executed first, followed by the derived class’s
constructor

When an object of a derived class is destroyed, its destructor
is called first, then that of the base class

innovative e entrepreneurial e global www.utm.my



@ UNIVERSITI TEKNOLOGI MALAYSIA

Example:

// This program demonstrates the order in which base and
// derived class constructors and destructors are called.
¢include <iostream>
using namespace std;

//***t************t****t**********

// BaseClass declaration *
//********t***t***t**t***t**t*****

innovative e entrepreneurial e global www.utm.my




UNIVERSITI TEKNOLOGI MALAYSIA

class BaseClass
{
public:
BaseClass() // Constructor

{ cout << "This is the BaseClass constructor.\n";

~BaseClass() // Destructor
{ cout << "This 1s the BaseClass destructor.\n";

//*t**tfﬁ?'*tttt"*it't'f"*t*t*f?

// DerivedClass declaration *

//ttttﬁ*'t'ttttt*rtrtttﬁyt'tttttty

class DerivedClass : public BaseClass

{
public:
DerivedClass() // Constructor
{ cout << "This is the DerivedClass constructor.\n";
~DerivedClass() // Destructor
{ cout << "This 1is the DerivedClass destructor.\n";
}i

}

}

}

innovative e entrepreneurial e global www.utm.my



@ UNIVERSITI TEKNOLOGI MALAYSIA

f/ikkkkkkdkrhkkrhkrhkrkr ekt xk

// main function *
'/,/'*.****t*********#*f***t#*******t*

int main()

{
cout << "We will now define a DerivedClass object.\n"; |
DerivedClass object; |
cout << "The program is now going to end.\n";
return 0;
}
Program Output

We will now define a DerivedClass object.
This is the BaseClass constructor.

This is the DerivedClass constructor.

The program is now going to end.

This is the DerivedClass destructor.

This is the BaseClass destructor.

innovative e entrepreneurial e global www.utm.my




Passing Arguments to Base Class Constructor

Allows selection between multiple base class constructors

& Specify arguments to base constructor on derived
constructor heading.

Must be done if base class has no default constructor

innovative e entrepreneurial e global



@ UNIVERSITI TEKNOLOGI MALAYSIA

Example:

6] class Rectangle{

7 protected:

8 int width;

9 int height;

10 public:

115 Rectangle(int width, int height){

12 width = _width;

13 height = height;
14 | }
15 - }; base class
16 constructor
17E] class Square : public Rectangle {
18 public:
19 Square(int length) : Rectangle(length, length)

gg-}s Y \

m—— derived class -
constructor

innovative e entrepreneurial e global www.utm.my




@ UNIVERSITI TEKNOLOGI MALAYSIA

Example:
if not using inline style

6] class Rectangle{

7 protected:

8 int width;

9 int height;

10 public:

11 Rectangle(int, int);

12 = };

13

14 class Square : public Rectangle {

15 public:

16 Square(int);

17 - };

18

19 ] Rectangle::Rectangle(int width, int height){
20 width = _width;

21 height = height;

%i } base class

= derived class RS

25 constructor
26 N /

27 Square::Square(int length) : Rectangle(length, length)
28 {}

innovative e entrepreneurial e global www.utm.my




IIIIIIIIIIIIIIIIIIIIIIIII

8.4: Redefining Base Class
Functions




Redefining Base Class Functions

To redefine a public member function of a base class

¢ Corresponding function in the derived class must have the same
name, number, and types of parameters

If derived class overrides a public member function of
the base class, then to call to the base class function,
specify:

¢ Name of the base class
¢ Scope resolution operator (: :)

¢ Function name with the appropriate parameter list

innovative e entrepreneurial e global www.utm.my



Redefining Base Class Functions

Not the same as overloading — with overloading, parameter
lists must be different

Objects of base class use base class version of function;
objects of derived class use derived class version of function

innovative e entrepreneurial e global



Problem with Redefining

Consider this situation:
¢ Class BaseClass defines functions x () andy (). x() callsto
y ().

¢ (Class DerivedClass inherits from BaseClass and redefines
functiony ().

¢ An object d of class DerivedClass is created and function x () is
called to.

¢ When x () is called to, which y () is used?, the one defined in
BaseClass or the the redefined one in DerivedClass”?

innovative e entrepreneurial e global www.utm.my



IIIIIIIIIIIIIIIIIIIIIIIIIII

4 ~ Problem with Redefining

RaseClass

void x () {

y();
}

* Object d invokes function x () void v () {..}

of BaseClass.

* Function x () invokes function DerivedClass
v () of BaseClass, not function
y () of DerivedClass,
because function calls are

bound at compile time. This is
static binding.

void vy () {..}

\ DerivedClass d;
.d.x();

innovative e entrepreneurial e global www.utm.my



8.5: Class Hierarchies




uuuuuuuuuuuuuuuuuuuuuuuuuu Class Hierarchies

—

Example:
Person
Student is the parent class for
classes Undergraduate and
Postgraduate, and a child Student

class from class Person \/ﬁ

#

Undergraduate Postgraduate

innovative e entrepreneurial e global www.utm.my



8.6: Multiple Inheritance




Multiple Inheritance

A derived (child) class can have more than one base (parent)
class.

Each base class can have its own access specification in
derived class's definition

& Multiple inheritance allows a derived class to inherit features
from different classes.

innovative e entrepreneurial e global



IIIIIIIIIIIIIIIIIIIIIIIIII

4 | Multiple Inheritance

Example:
Worker Student
-job -program
-salary -faculty
A A
Each object of PartTimeStudent
PartTimeStudent has the following attributes:
-maxCreditAllowed job, salary,

program, faculty
maxCreditAllowed

innovative e entrepreneurial e global www.utm.my



@ UNIVERSITI TEKNOLOGI MALAYSIA

Multiple Inheritance

Example' 6 class Worker{
7 protected:
8 string job;
9 double salary;
10
11 public:
12H Worker(string job="", double salary=0.0){
13 job = _job;
14 salary = _salary;
15 }
16 - };
17
18
19 class Student{
20 protected:
21 string program;
22 string faculty;
23
24 public:
25 Student(string program="", string faculty=""){
26 program = _program;
27 faculty = faculty;
28 }
29 - };

innovative e entrepreneurial e global www.utm.my




UNIVERSITI TEKNOLOGI MALAYSIA

32 class PartTimeStudent: public Student, public Worker <— “Aur“Fﬂe

338 { inheritance

34 protected:

35 int maxCreditAllowed;

36

37 public:

38 PartTimeStudent( int _maxCreditAllowed=0,

39 string program="", string faculty="",

40 string job="", double _salary=0.0

41 ) : Student(_program, faculty) , Worker(_job, _salary)
42 {

43 maxCreditAllowed = maxCreditAllowed;

44 program = _program;

45 faculty = faculty;

46 | }

47

48H void print() const{

49 cout << "Part Time Student Information: " << endl << endl;

50

51 cout << "Program: " << program << endly // inherited from Student

52 cout << "Faculty: " << faculty << endl;\ // inherited from Student

53

54 cout << "Job : " << job << endl; // inherited from

55 cout << "Salary : " << salary << endl; \ // inherited from

56

57 cout << "Max Credit Allowed: " << maxCreditAllowed << endl; // its own member
58 }

59 - };

innovative e entrepreneurial e global www.utm.my




