
08: INHERITANCE

Programming Technique II

(SCSJ1023)

Adapted from Tony Gaddis and Barret Krupnow (2016), Starting out with
C++: From Control Structures through Objects

8.1: Introduction to Inheritance

What is Inheritance?

 Inheritance provides a way to create a new class from an
existing class.

 The new class is a specialized version of the existing class.

 Classes organised into a ‘classification hierarchy’.

 Classes can inherit attributes and methods from other
classes, and add extra attributes and methods of its own.

What is the Purpose of Inheritance?

 Specialisation: Extending the functionality of an existing class

 Generalisation: sharing commonality between two or more
classes

To be included ….

 Specialisation: Objects are specific entities from the same
class but with their own data

 Generalisation: also applies in Encapsulation. A class is a
generalization of objects sharing the same structure.
However each object has different data. For example, all
students have the same structure, e.g. each of them has a
name. Thus student is the class. However, each student has
their unique name. e.g. “Ali”. Thus student “Ali” is an object

Example: Insects

Generalisation: Insect represents all

of the generic attributes and methods

shared by the Bee and Grasshopper.

Both Bee and Grasshopper are Insect.

Specialisation: Bee is a specialized

version of Insect, which is different

from Grasshopper.

Specialisation:

Grasshopper is another

specialized version of

Insect, which is

different from Bee.

Terminology

 Base class or parent class or super class – A class from which another
class inherits.

 Derived class or child class or subclass – A class which inherits some of its
attributes and methods from another class.

 The base class represents general characteristics shared by the derived
classes.

 Inheritance establishes an "is a" relationship between classes.

Vehicle
Vehicle is the

parent class.

“is-a” relationship

Car and Truck are

child classes of

Vehicle.

Car and Truck are

Specialized versions of

a Vehicle.

Vehicle represents all

of the generic attributes

and methods of a

vehicle.

Car Truck

 Example:
 A car is a vehicle. A truck is also a vehicle.

 Vehicle is the base class. Car and Truck are the derived classes.

Insect
Insect is the

parent class.

“is-a” relationship

Bee and Grasshopper are

child classes of

Insect.

Bee and Grasshopper are

Specialized versions of

an Insect.

Insect represents all

of the generic attributes

and methods of any

insect.

Bee Grasshopper

 Example:
 A bee is an insect. A grasshopper is also an insect.

 Insect is the base class. Bee and Grasshopper are the derived classes.

Student

Undergraduate Postgraduate

 Example:
 A student can be an undergraduate or a postgraduate student.

 The base class is Student, and the derived classes are Undergraduate and
Postgraduate.

Undergraduate

Notations

Student

Postgraduate

UML

notation for

inheritance

//base class

class Student

{

. . .

};

// derived classes

class Undergraduate:public Student

{ . . .

};

class Postgraduate : public Student

{ . . .

};

C++ code for

inheritance

What Does a Child Have?

 An object of the derived class has:
 all members defined in child class

 all members declared in parent class

 An object of the derived class can use (or access to):
 all public members defined in child class

 all public members defined in parent class

8.2: Protected Members and Class Access

Protected Members and Class Access

 protected member access specification: like private,
but accessible by derived classes.
 Only the derived classes can access to protected members in the

base class, but not their objects.

 Class access specification: determines how private,
protected, and public members of base class are
inherited by the derived class.

Access Specifiers

 public – object of derived class can be treated as object of
base class (not vice-versa)

 protected – more restrictive than public, but allows
derived classes to know details of parents

 private – prevents objects of derived class from being
treated as objects of base class.

Inheritance vs. Class Access Specifiers

Parent
Inheritance specifier controls

how a child class (and its

objects) accesses to members in

the parent class.

Member accessibility can be specified at two area:
 Inside each class. (called Class Access Specifier)

 When a derived class extends the base class (called Inheritance
Specifier).

Child1 Child2

Class access specifier

controls accessibility

to members for each

class.

class Student

{ private:

string name;

string program;

public:

Student();

};

class Undergraduate: public Student

{ . . .

};

Inheritance vs. Class Access Specifiers

Class access

specifier

Example:

Inheritance

specifier

Inheritance vs. Class Access Specifiers

private: x

protected: y

public: z

private: x

protected: y

public: z

private: x

protected: y

public: z

Base class members

x is inaccessible

private: y

private: z

x is inaccessible

protected: y

protected: z

x is inaccessible

protected: y

public: z

How inherited base class
members

appear in derived class
private
base class

protected
base class

public
base class

Accessibility vs. Ownerships

 A class can access all its own members.

 However, the object can only access to the public
members.

 An object owns all members from the class it was created
from, regardless of private , public or protected.

Accessibility vs. Ownerships
Example:
Ownership

name program print() cgpa read()

Student ✓ ✓ ✓ - -

Undergraduate ✓ ✓ ✓ ✓ ✓

Object s ✓ ✓ ✓ - -

Object u ✓ ✓ ✓ ✓ ✓

Accessibility vs. Ownerships

Example:
Accessibility

name program print() cgpa read()

Student ✓ ✓ ✓ - -

Undergraduate - - ✓ ✓ ✓

Object s - - ✓ - -

Object u - - ✓ - ✓

Accessibility vs. Ownerships

 Inheritance access specifier is commonly specified as
public.

 It is a good idea to specify data members as protected
rather than private.

 Thus, child classes can directly access to them,

 while the objects still cannot access to them, i.e., the concept of
data hiding remains.

Accessibility vs. Ownerships

Example:

Accessibility

name program print() cgpa read()

Student ✓ ✓ ✓ - -

Undergraduate ✓ ✓ ✓ ✓ ✓

Object s - - ✓ - -

Object u - - ✓ - ✓

8.3: Constructors and Destructors in Base and
Derived Classes

Constructors and Destructors in Base and
Derived Classes

When an object of a derived class is destroyed, its destructor
is called first, then that of the base class

When an object of a derived class is created, the base class’s
constructor is executed first, followed by the derived class’s
constructor

 Derived classes can have their own constructors and
destructors

Example:

Passing Arguments to Base Class Constructor

Must be done if base class has no default constructor

 Specify arguments to base constructor on derived
constructor heading.

 Allows selection between multiple base class constructors

Example:

base class
constructor

derived class
constructor

Example:
if not using inline style

base class
constructorderived class

constructor

8.4: Redefining Base Class
Functions

Redefining Base Class Functions

 If derived class overrides a public member function of
the base class, then to call to the base class function,
specify:
 Name of the base class
 Scope resolution operator (::)
 Function name with the appropriate parameter list

 To redefine a public member function of a base class
 Corresponding function in the derived class must have the same

name, number, and types of parameters

Redefining Base Class Functions

 Objects of base class use base class version of function;
objects of derived class use derived class version of function

 Not the same as overloading – with overloading, parameter
lists must be different

Problem with Redefining

 Consider this situation:
 Class BaseClass defines functions x() and y(). x() calls to
y().

 Class DerivedClass inherits from BaseClass and redefines
function y().

 An object d of class DerivedClass is created and function x() is
called to.

 When x() is called to, which y() is used?, the one defined in
BaseClass or the the redefined one in DerivedClass?

Problem with Redefining

void x(){

y();

}

void y(){…}

void y(){…}

BaseClass

DerivedClass

DerivedClass d;

d.x();

• Object d invokes function x()

of BaseClass.

• Function x()invokes function

y() of BaseClass, not function

y()of DerivedClass,

because function calls are

bound at compile time. This is
static binding.

8.5: Class Hierarchies

Class Hierarchies
 A base class can be derived from another base class.

Student

Example:

PostgraduateUndergraduate

Person

Student is the parent class for

classes Undergraduate and

Postgraduate, and a child

class from class Person

8.6: Multiple Inheritance

Multiple Inheritance

 Each base class can have its own access specification in
derived class's definition

 A derived (child) class can have more than one base (parent)
class.

Multiple inheritance allows a derived class to inherit features
from different classes.

Multiple Inheritance

PartTimeStudent

-maxCreditAllowed

Example:

Worker

-job

-salary

Student

-program

-faculty

Each object of PartTimeStudent

has the following attributes:

job, salary,

program, faculty

maxCreditAllowed

Multiple Inheritance

Example:

Multiple
inheritance

