@ UNIVERSITI TEKNOLOGI MALAVS/

7: ASSOCIATION,
AGGREGRATION &
COMPOSITION

Programming Technique |l
(SCSJ1023)

Adapted from Tony Gaddis and Barret Krupnow (2016), Starting out with
C++: From Control Structures through Objects

@ UNIVERSITI TEKNOLOGI MALAYSIA

Associations

innovative e entrepreneurial e global www.utm.my

ntroduction to Associations

& Association: Indicates relationships between classes through
their objects

Association can be, one to one, one to many, many to
one, or many to many relationships.

innovative e entrepreneurial e global

IIIIIIIIIIIIIIIIIIIIIIIII

7~ Introduction to Associations

Example:

Lecturer Student
Teaches 0..*
-
lecturer students
Lecturer . Student
Advises 0..*
—p
courseAdvisor advisees
Lecturer . Student
Supervises 0.*
supervisor postGraduates

innovative e entrepreneurial e global

www.utm.my

@ UNIVERSITI TEKNOLOGI MALAYSIA

Aggregations

innovative e entrepreneurial e global www.utm.my

ntroduction to Aggregations

Aggregation: a special type of association which is one way
relationship.

It models a ‘has a’ relationship between classes — enclosing
class ‘has a’ enclosed class.

The existence of the objects (enclosing and enclosed) are
independent.

innovative e entrepreneurial e global

IIIIIIIIIIIIIIIIIIIIIIIII

2 Introduction to Aggregations

Example:

Wallet Money

<> 0.

« A “has a” relationship: Wallet has Money

Independence: However, money does not necessarily need to have
Wallet.

* Money objects can be created even though there is no Wallet
object.

innovative e entrepreneurial e global www.utm.my

mplementations of Aggregations

An aggregation relationship is implemented by objects contain pointers
to other objects.

¢ it is because the existence of the enclosing and enclosed objects are
independent.

¢ |f one party is destroyed, the other party still exists.

¢ the relationship between objects can be broken by only disconnecting the
pointer.

Example:
Consider course registration system.

A student may enroll to a course. Assuming that the student quits from his or her study. In
this case, his or her record will be removed from the system. However, the course
needs to remain as other students are still enrolled to the course.

Relationship between students and courses should be done by an aggregation.

innovative e entrepreneurial e global www.utm.my

Implementations of Aggregations

* Aggregation - declare attributes as object pointers.
* The pointers can be set to NULL to represent no object.

class Student
{ private:
Course *course;
public:
Student () {course = NULL;}

void enrollCourse (Course *) ;

void withdrawCourse () ;

-}

innovative e entrepreneurial e global www.utm.my

UNIVERSITI TEKNOLOGI MALAYSIA

Implementations of Aggregations

void Student: :enrollCourse (Course*, c) {

course = C;,

void Student: :withdrawSubject () {
course=NULL;

innovative e entrepreneurial e global

Implementations of Aggregations

int main ()

{
Course cl(“SCSJ1023”,”Prog. Tech. 27);
Student sl = new Student;

Student s2, s3;

sl->enrollCourse (&cl) ;

s2.enrollCourse (&c1)9 Pass course as a pointer |

s3.enrollCourse(&cl) ;

}

innovative e entrepreneurial e global www.utm.my

@ UNIVERSITI TEKNOLOGI MALAYSIA

Compositions

innovative e entrepreneurial e global www.utm.my

ntroduction to Compositions

Composition: a restricted version of aggregation in which the enclosing
and enclosed objects are highly dependent on each other.

The existence of the enclosed objects are determined by the enclosing
objects.

It models a whole/part relationship with a strong ownership; when the
whole dies, the part does so as well

¢ enclosing objects(whole) ‘has / contains/ consists of’ enclosed objects (parts)
¢ Alternatively: the enclosed object is “part of” the enclosing object.

An object can be only part of one whole object

The whole object is responsible for creation and destruction of its part(s)

innovative e entrepreneurial e global www.utm.my

7~ Introduction to Compositions

Example:

Body Heart

A

* A “whole-part” relationship: human Body “consists of”/ ’has”
Heart, or Heart “is part” of human Body.

* Dependence: A human body needs heart to live and a heart needs
a human body to survive. If one dies then another one too.

« If the Body object is destroyed then Heart object also will be
gone.

 When a Body object is created, the Heart object is also created.

innovative e entrepreneurial e global www.utm.my

mplementations of Compositions

Composition is implemented by the nested objects, i.e., whole objects
contain the part objects.

¢ it is because the existence of the whole (enclosing) and part (enclosed)
objects are dependent.

Example:

howNumberofPages()()

!

Chapter

int no_of pages
get_pages()) |

innovative e entrepreneurial e global www.utm.my

UUUUUUUUUUUUUUUUUUUU

Implementations of Compositions

class Chapter{
int nPages;
public:
Chapter (int pages);
int getPages() ;
};
Chapter: :Chapter (int pages) {
nPages = pages;

}

int Chapter: :getPages () {
return nPages;

}

innovative e entrepreneurial e global www.utm.my

class Book({
public:
Chapter c¢cl1l, c2, c3, c4;
Book (int pagesl, int pages2, int pages3,
int pagesd4) :cl(pagesl), c2(pages2?),
c3 (pages3) ,c4 (pages4) { }

void showNumberofPage ;
};
void Book:: showNumberofPages () {
cout<<"Total number of pages" <<
(cl.getPages() + c2.getPages()+
c3.getPages () + cd4.getPages()) ;

}

int main () {
Book pt2(200, 190, 50, 100);
pt2. showNumberofPages () ;

