

SEMESTER 2

SESSION 2019/2020

SECR 2033

PROJECT CASE 4

PREPARED BY :

1. NUR ALEEYA SYAKILA BINTI MUHAMAD SUBIAN (A19EC0127)

2. NUR HADIRAH MUNAWARAH BINTI ROZMIZAN (A19EC0201)

LECTURER'S NAME: DR. ZURIAHATI

SECTION : 02

SUBMITTED ON : 28/6/2020

1

Table of Contents
MEMBER RESPONSIBILITIES .. 2

CODING AND EXPLANATION ... 3

EXPLANATION .. 8

EXAMPLES OF INPUTS & OUTPUTS ..10

DISCUSSION AND CONCLUSION ...11

References ...12

2

MEMBER RESPONSIBILITIES

Functional Team Leader :
NUR ALEEYA SYAKILA BINTI MUHAMAD SUBIAN

● Generates idea and manage tasks
● Meets regularly to solve some issues
● Provides brilliant method to solve the

problem
● Manage project with low risks
● Contributes to overall project especially

coding
● Monitor team member to keep in

tracking

Core Team Member :
NUR HADIRAH MUNAWARAH BINTI ROZMIZAN

● Contributes to the project
● Provides requirement from team leader
● Attendant and actively participated
● Contributes to overall project especially

report
● Performs the assigned tasks
● Implement the tasks given

3

CODING AND EXPLANATION

CODING

TITLE COA Project (case4.asm)

 ; Group Members:
 ;1. NUR ALEEYA SYAKILA BINTI MUHAMAD SUBIAN (A19EC0127)
 ;2. NUR HADIRAH MUNAWARAH BINTI ROZMIZAN (A19EC0201)
 ; Section : 02

INCLUDE Irvine32.inc

.data
 num byte 10 dup(0)
 count dword 0

 LIM = 50
 inputString byte LIM+1 DUP(?)
 choice1 byte "y",0
 choice2 byte "n",0
 q1 BYTE "Please Enter 4-digit Hexadecimal integer (e.g.,A1B2): ",0
 s1 BYTE "Two's Complement of Hex ",0
 s2 BYTE " is ",0
 s3 BYTE "ERROR ",0
 q2 BYTE "Try again? (y/n) ",0
 s4 BYTE "WRONG CODE! please choose between (y/n) !!",0
 cb byte 0 ;Check when propagation or not

.code
main PROC

dowhile:

 mov edx, OFFSET q1 ;"Please Enter 4-digit Hexadecimal integer (e.g.,A1B2):
 call WriteString

4

 mov edx, OFFSET num
 mov ecx, SIZEOF num
 call ReadString
 ;reading input from user

 mov count, eax
 mov edx, OFFSET s1 ;"Two's Complement of Hex"
 call WriteString
 mov edx, OFFSET num ;display original input from user
 call WriteString
 mov edx, OFFSET s2 ;"is"
 call WriteString

 INVOKE Str_ucase, ADDR num
 mov esi, OFFSET num
 mov ecx, 3

FIVENBELOW:
 mov al, byte ptr [esi+ecx]
 cmp al, 53
 ja FIVENABOVE
 sub al, 48
 mov bl, 70
 sub bl, al
 jmp MSB

FIVENABOVE:
 cmp al, 57
 ja ALPHABET
 sub al, 54
 mov bl, 57
 sub bl, al
 jmp MSB

5

ALPHABET:
 cmp al, 70
 ja wrong
 sub al, 65
 mov bl, 53
 sub bl, al
 jmp MSB

MSB :
 cmp ecx, 3
 jne propa

here1:

 cmp bl, 57
 jne here2
 mov bl, 65
 mov cb, 0
 jmp answer

here2:
 cmp bl, 70
 jne here3
 mov bl, 48
 mov cb, 1
 jmp answer

here3:
 add bl, 1
 mov cb, 0
 jmp answer

propa:
 cmp cb, 0
 jne here1

6

answer:
 mov byte ptr [esi+ecx], bl
 dec ecx
 cmp ecx, -1
 je final
 jmp FIVENBELOW

final:
 mov edx, OFFSET num
 call WriteString
 call Crlf
 jmp exitt

wrong:
 mov edx, OFFSET s3 ;"Wrong hexadecimal entered"
 call WriteString
 call Crlf
 jmp exitt

exitt:
 mov edx, OFFSET q2
 call WriteString
 mov edx,OFFSET inputString
 mov ecx ,LIM
 call ReadString
 INVOKE Str_compare, ADDR inputString, ADDR choice1 ;y
 jne No
 call Crlf
 jmp dowhile

No:
 INVOKE Str_compare, ADDR inputString, ADDR choice2 ;n
 jne other
 call Crlf
 jmp outt

7

other:
 call Crlf
 call Crlf
 mov edx, OFFSET s4
 call WriteString
 call Crlf
 call Crlf
 call WaitMsg ; "Press [Enter]..."
 call Clrscr ; clear screen
 jmp exitt

outt:
 call WaitMsg ; "Press [Enter]..."
 call Clrscr ; clear screen
 exit
main ENDP

END main

8

EXPLANATION

 In .data inside the MASM coding, num is stored in an array with data type byte, count
with data type dword which is double world, LIM that is assigned to 50 and lastly inputString with
unknown value that has byte data type. In addition, there are about 8 statements, choice1,
choice2, q1,s1,s2,s3, q2 and s4. The statements are stored in byte. cb is represent for the carrybit.

 The main .code, inside the dowhile, q1 is displayed which is “Please Enter 4-digit
Hexadecimal integer (e.g.,A1B2):” And the size of array num which is 10 is assigned to register
ecx. It then reads the user input and stores it in a data type string. After that, it is stored in register
eax. And then, s1 and s2 are displayed in output which is “Two's Complement of Hex “ and “is”
respectively. Then, the first address of num is stored in register esi. Lastly, 3 is assigned to the
register of ecx.

 In FIVENBELOW, the pointer of the sum register esi and ecx is moved into al register. Then
it compares with al register with 53(5 in ascii table). If it is bigger than 53, it will jump to
FIVENABOVE. This means that if al is less or equal to 53, the number is smaller or equal to 5.
Then, in it will subtract register al with 48, move 70 to register bl and sub al with bl. This clearly
means that the above 3 lines are doing 1’s complement. Lastly, it will jump to MSB.

 In FIVENABOVE, it will compare to 57 (9 in ascii table). If al is above than 57, it means the
number is bigger than 9. Then, it jump above (ja) to ALPHABET. If not, it will subtract with
54,move 57 into bl register and subtract al with bl register. Lastly, it will jump to MSB.

 In ALPHABET, it will compare al register with 70 (F in ascii table). If al is less than or equal
to 70, it means that the number is smaller to F. Proceed, we subtract between al register and 65,
move 53 into bl register and subtract al register and bl register. Lastly, it will jump to MSB. But if
bigger than F, it is invalid. It will jump to wrong if above than F.

 In MSB, 3 is compared to register ecx. And it will jump if not equal (jne) to propa. This
means that if it is not Most Significant Bit (MSB) , it will directly skip the below step to
propa(propagation).

 In here1, this means carry bit propagation only occurs if the radix(digit) in F. First, it will
compare register bl with 57,compare if it is 9 (57th in ASCII Table), it will become A. Then it will
jump if not equal (jne) to here2 which means if it is not 9 , it will jump to here2 to do the next

9

task. After that, 65 is moved to register bl and 0 is moved to cb. This means that, take for example
9+1=A, there is no carry. Therefore, the carry bit is 0. Lastly, it will jump to answer.

 In here2 , register bl is compared to 70 . It compares with F (70 in ASCII Table) or not.It
will jump to here3 if not equal. Then, 48 is moved to register bl and also 1 is moved to cb. This
means F+1=10 , there is a carry bit going on. Therefore, the carry bit is set to 1. Then it will lastly
jump to answer.

 In propa, 0 is compared to cb(carry bit). It will check whether there is carry bit propagation
or not. If it is not equal to 0, It will go to here1. It will jump back to here1 to check the next digit.
If it is 0, it will proceed to answer.

 In answer, we will assign a new digit(digit that has changed to 2’s complement) to the
char array. Register bl is move to pointer of sum of esi and ecx. Then, it will decrement the
counter which is ecx to update the counter. After that, -1 will compare to the counter. This means
it will jump to final if the counter is equal to -1. It will repeat the step by jump to FIVENBELOW
if it is not -1.

 In final, it will display the full 2’s complement after completing and change all of the user
input to 2’s complement. Then it will jump to exitt which means jump to exit or ask the user if
they want to try again or not.

In wrong, s3 is displayed which is “Error” if user enters an INVALID hexadecimal number.
Then it will jump to exitt.

 In exitt , q2 is displayed which is “Try again? (y/n)” and the counter is assigned to LIM(that
has a value of 50). Here, it will compare the user entered code whether it's the same with choice1
(y). If it is not the same, it will jne to No. But if it’s the same, it will jump to dowhile and start all
over again.

 In No, it will compare the user entered code whether it's the same with choice2 (n). If it's
not the same, it will jne to other. If it is the same, it will jump to outt to proceed with exiting the
program.

 In other, s4 is displayed which is “WRONG CODE! please choose between (y/n) !!”. Then
it jumps to exitt.

 Lastly in outt, if the user press enter it will freeze for a while then it clears the screen and
the program will end.

10

EXAMPLES OF INPUTS & OUTPUTS

INPUT & OUTPUT

Example for wrong input of choice (y/n), the user input capital letter “YA” instead of y or n

Example for wrong hexadecimal, correct user input of choice (y/n)

11

DISCUSSION AND CONCLUSION

It can be discussed that the function of this coding is to read the user input which is 4 digits
hexadecimal integers. If the user wrongly enters a hexadecimal integer, it will show error output.
Then, the coding converts the inputs into two’s complement of HEX numbers. If the input is
correct, it will display HEX numbers after applying two’s complement method. After that, the
coding will ask the user if they want to repeat the question again.

However, if the user gives the input wrongly to that question, it will directly execute and
give errors messages. If the input is correctly entered, it will continue to ask for entering another
4-digits hexadecimal integer.

From this, it can be seen that the user's input is important such as entering “y” or “n”
choices. This is because if the user entered another than the particular character, it will straightly
give wrong output. Another thing is that if the user enters the input of hexadecimal numbers
wrongly, it will also show error messages because this coding will check the input one by one by
comparing using ASCII value.

12

References

Koppella, G. (2014, April 15). An assembly program to accept a decimal number and print it’s

2’s complement binary and hexadecimal. From cssimplified:

http://cssimplified.com/assignments/an-assembly-language-program-to-accept-a-

decimal-number-and-display-its-twos-complement-representation-in-binary-and-

hexadecimal-formats

Rathor, R. (2019, January 22). program to find 1's and 2's complement of 8-bit number. From

tutorialspoint: https://www.tutorialspoint.com/8085-program-to-find-1-s-and-2-s-

complement-of-8-bit-number

thehamzayy. (2015, November 18). Twos complement of a hexadecimal to form the twos. From

coursehero: https://www.coursehero.com/file/p5i7ip0/Twos-Complement-of-a-

Hexadecimal-To-form-the-twos-complement-of-a-hexadecimal/

