(0) UTM UNIVERSITI TEKNOLOGI MALAYSIA SCHOOL OF COMPUTING SESSION 2019/2020 SEMESTER 2

PROBABILITY AND STATISTICAL
DATA ANALYSIS

(SECI2143-02)

PROJECT 2:
STARBUCK'S BEVERAGE ANALYSIS
LECTURER: CHAN WENG HOWE

```

\section*{Contents}
Introduction ..... 2
Starbucks' Beverage Nutritional Facts ..... 3
Analysis of The Beverages ..... 4
The Population Mean for Calories ..... 4
Correlation between Calories and Caffeine ..... 5
Regression between Calories and Sugar ..... 7
Dependency of Beverage and Saturated Fat ..... 8
Conclusion ..... 9
Appendix ..... 10

\section*{Introduction}

Handcrafted drinks are famous these days. It can be proved by the blooming beverages' industry such as Tealive, Chatime, and Starbucks branching their premises in various place in the nation. It manages to attract customers with their variety of flavoursome drinks even with their slightly higher price compared to local store drinks. Since these drinks have become a part of people's life, it is important for them to know what they are consumed in term of nutrition because it is commonly known that these type of drinks have high amount of sugar in every serving etc. Given that sugar is one of the sources of calories, addiction to these types of drinks can affect their health and brings diseases. Besides, people should also take note of the other nutrition it contained. So, this project's objective is to investigate these beverages' calories content and the ingredients that may contribute to the factor. The sample will be taken from the Starbucks' Drink Menu to be analysed.

\section*{Starbucks' Beverage Nutritional Facts}

Toward analysing the nutritional facts of handcrafted drinks, the dataset of Starbucks' Beverages will be used. This data was collected and published by Starbucks on its public domain. The purpose of the dataset is to illustrates the nutritional information for Starbucks' drink menu items. All nutritional information for drinks is for the \(120 z\) serving size, and consisting drinks from 5 types of beverages, each with different preps. The total sample size is 224.

Table 1 illustrates the variables in the dataset
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Name of Variables } & Type of Data \\
\hline Beverage & Nominal \\
\hline Beverage Prep & Nominal \\
\hline Calories & Ratio \\
\hline Total Fat & Ratio \\
\hline Trans Fat & Ratio \\
\hline Saturated Fat & Ratio \\
\hline Sodium & Ratio \\
\hline Total Carbohydrate & Ratio \\
\hline Cholesterol & Ratio \\
\hline Dietary Fibre & Ratio \\
\hline Sugars & Ratio \\
\hline Protein & Ratio \\
\hline Vitamin A & Ratio \\
\hline Vitamin C & Ratio \\
\hline Calcium & Ratio \\
\hline Iron & Ratio \\
\hline Caffeine & Ratio \\
\hline
\end{tabular}

In this analysis, several variables will be used for specific test which are Beverage, Sugars, Calories, Saturated Fat, and Caffeine. Four different statistical tests will be done between these variables.

Table 2 shows the statistical test and its objectives
\begin{tabular}{|l|l|}
\hline Statistical Test & Objectives \\
\hline Hypothesis Testing on One Sample & \begin{tabular}{l} 
To test whether the population mean for \\
Calories' content of targeted population is equal \\
to 150 Calories with confidence level of \(95 \%\)
\end{tabular} \\
\hline Correlation & \begin{tabular}{l} 
To see the relationship between Calories and \\
Caffeine (mg)
\end{tabular} \\
\hline Regression & Regression of Calories and Sugar (g) \\
\hline Chi Square Test of Independence & \begin{tabular}{l} 
To test the dependency between Beverage and \\
Saturated Fat (g)
\end{tabular} \\
\hline
\end{tabular}

\section*{Analysis of The Beverages}

\section*{The Population Mean for Calories}

The method that was used to test the claimed that the population mean for Calories content of the Starbucks' drinks is equal to 150 is hypothesis testing on one sample with significance level of 0.05 . A z-test statistic will used since we want to test the population mean.

\section*{Hypothesis Statement:}
\(H_{0}: \mu_{0}=150 \quad H_{1}: \mu_{1} \neq 150\)

The analysis is done by using R as below:
```

> cal=starbucks_menu\$Calories
> s=sd(cal)
> mu=150
> n=242
> a1pha=0.05
> xbar=mean(ca1)
> Z=(xbar-mu)/(s/sqrt(n))
> a7pha=0.05
> z.alpha=qnorm(1-(alpha/2))
> c(-z,z)

```

After calculating the test statistic and the \(p\)-value in \(R\), the results are:

\section*{\(Z=6.34889 \quad\)-value \(=(-1.9510,1.9510)\)}

Since the \(z=6.34889\) exceed the \(p\)-value, we reject the null hypothesis. There is sufficient evidence to support that population mean for Calories content of Starbucks' drinks is not equal to 150.

\section*{Correlation between Calories and Caffeine}

In this part, we want to see the correlation between Caffeine and the Total Fat (g) of the beverages. Let \(\mathrm{x}=\) Calories and \(\mathrm{Y}=\) Caffeine, and calculate the correlation coefficient and plot the data as Scatter Diagram in R. The analysis is as below:

After calculating the correlation coefficient using \(R\), the result as below:
```

$>$ a1pha=0.05
> X<-starbucks_menu\$Calories
> y<-starbucks_menu\$`Caffeine (mg)
> plot $(x, y, x 7 i m=c(0,600), y 7 i m=c(0,500), x 7 a b=" C a 1 o r i e s ", y 1 a b=" C a f f e i n e(m g) ")$
$>r=\operatorname{cor}(\mathrm{x}, \mathrm{y})$
$>t=r /\left(\operatorname{sqrt}\left(\left(1-\left(r^{*} r\right)\right) /(n-2)\right)\right)$
$>$ t.alpha<-qt((a1pha/2), df=n-2,1ower.tail = FALSE)
$>c(-t . a l p h a, t . a l p h a)$

```


Figure 1 shows the correlation between Calories and Caffeine

Result:

\section*{Correlation coefficient=0.0503}

The correlation coefficient is close to 0 , meaning that it has weaker linear relationship.

Due to the low correlation coefficient, a significance test for correlation is done to check whether these variables have linear relationship at 0.05 significance level.

Hypothesis Statement:
\(H_{0}: \rho=0\) (no linear correlation) \(\quad H_{1}: \rho \neq 0 \quad\) (linear correlation exist)
```

> a1pha=0.05
> t=r/(sqrt ((1- (r*r))/(n-2)))
> t.alpha<-qt((alpha/2),df=n-2,lower.tail = FALSE)
> c(-t.alpha,t.alpha)

```

Results:

\section*{T-statistic=0.7807}

\section*{p-value=(-1.9699, 1.9699)}

Since the T-statistic=0.7807 does not fall in the critical region, p -value \(=(-1.9699,1.9699)\), we failed to reject the null hypothesis. There is sufficient evidence to support that the Calories and Caffeine are not correlated to each other.

\section*{Regression between Calories and Sugar}

Since sugar is one of main source of calories, we want to prove that the number of calories is affected by the sugar amount. Let \(x=\) Sugars, and \(y=C a l o r i e s\). Then, we want to decide if these variables have significant relationship.

Hypothesis Statement:
\(H_{0}: \beta_{0}=0\) (no linear correlation) \(\quad H_{1}: \beta_{1} \neq 0\) (linear correlation exist)

Analysis using R:
```

> x2<-starbucks_menu\$`Sugars (g)
> y2<-starbucks_menu\$Calories
$>$ mode1<-1m (y2~x2)
$>$ mode1
$>$ plot $(x 2, y 2, x 7 i m=c(0,80), y 1 i m=c(0,500), x 1 a b=" \operatorname{Sugars}(g) ", y 1 a b=" C a 1 o r i e s ")$
> abline(mode1)
> summary (mode1)

```

Output when summary(model) is called:
```

Ca11:
1m(formula = y2 ~ x2)
Residuals:
Min 1Q Median 3Q Max
-79.930 -33.424 -8.424 24.033 121.506
Coefficients:
Estimate Std. Error t value Pr(> |t|)
(Intercept) 37.5429 5.3665 6.996 2.61e-11 ***
x2 4.7426 0.1398 33.932 < 2e-16 %**
Signif. codes:
0 `***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 42.81 on 240 degrees of freedom
Multiple R-squared: 0.8275, Adjusted R-squared: 0.8268
F-statistic: }1151\mathrm{ on 1 and 240 DF, p-value: < 2.2e-16

```

Results:

\section*{y-intercept=37.5429}
\(\mathrm{m}=4.7426\)
\(R^{2}=0.8275\)
\(p\)-value \(=2.2 \times 10^{-16}\)

Since \(p\)-value is smaller than 0.05 significance level, thus we rejec \(t\) the null hypothesis. So, there is sufficient evidence to support th at there is linear correlation between sugar and calories.

But based on the results, it seems that \(R^{2}=0.8275\) which is in the range of \(0-1\). This portrays that it has a weaker linear relationshi \(p\) and some but not all the variation in Calories are explained by \(v\) ariation in Sugars.

Figure 2 shows the relationship between Sugars and Calories


\section*{Dependency of Beverage and Saturated Fat}

Now, we want to test whether saturated fat is independent towards beverage at 0.05 significance level.

Hypothesis Statement:
\(H_{0}\) : Saturated fat is independent to Beverage \(\quad H_{1}\) : Saturated Fat is related to Beverage

Analysis using R:
```

> library(p7yr)
> sed<-subset(starbucks_menu, `Beverage_category`=='Signature Espresso
Drinks',select=c(Beverage:`Caffeine (mg)`))
> beverage<-count(sed$Beverage)
> names(beverage)[1]='beverage'
> saturated_fat<-count(sed$`Saturated Fat (g)`)
> names(saturated_fat)[1]='saturated_fat'
> d<-data.frame(beverage, saturated_fat)
> d<-data.frame(beverage$freq, saturated_fat$freq)
> chisq.test(d, correct=FALSE)
> a1pha2=0.05
> x2.alpha<-qchisq(a1pha2, df=3, 1ower.tai1 = FALSE)

```

\section*{Results:}
\[
X^{2}=32.19
\]
critical value \(=7.8147\)
Since \(X^{2}=32.19\) is larger than \(p\)-value=7.8147, we reject the null hypothesis. There is sufficient evidence to support that saturated fat is related to beverage.

\section*{Conclusion}

Post-analysis process, some of our assumption are proved to be right while the rest are rejected. It is shown that the population mean for Calories content of Starbucks' drinks is not equal to 150. Besides, there is sufficient evidence to support that Calories and Caffeine have a weak linear relationship. The result is further proved through T-statistic test which shown that the Calories and Caffeine are not correlated to each other. Although Calories does not relate to Caffeine, it does have a significant relationship with Sugar. From the regression analysis, there is evidence to support that there is linear correlation between Sugar and Calories although the linear relationship is not strong enough. Finally, saturated fat has been proved to relate with beverage after conducting the chi-square test of dependency.

\section*{Appendix}

Source of dataset:
https://www.kaggle.com/starbucks/starbucks-menu?select=starbucks drinkMenu expanded.csv```

