

Introduction

- ANOVA is a method of testing the equality of three or more population means by analyzing sample variances.
- The purpose of ANOVA is to test for significant differences between Means.
- Elementary concepts provide a brief introduction to the basics of statistical significance testing.

innovative • entrepreneurial • globa

www.utm.mv

One-Way ANOVA with Equal Sample Sizes

 We assume that the populations have normal distribution and same variance (or standard deviation), and the samples are random and independent of each other.

ANOVA Notation:

n = size of each sample

k = number of populations or treatments being compared

 $s_{\overline{v}}^2$ = variance sample means

 s_P^2 = pooled variance obtained by calculating the mean of the sample variances

innovative • entrepreneurial • global

One-Way ANOVA with Equal Sample Sizes

- Test statistic: $F = \frac{\text{variance between sample}}{\text{variance within sample}} = \frac{nS_{\overline{X}}^2}{S_P^2}$
- Variance between sample:
 - Also called variation due to treatment
 - An estimate of the common population variance σ^2 that is based on the variability among the sample means.
- Variance within sample:
 - Also called variation due to error.
 - An estimate of the common population variance σ^2 based on the sample **variances**.

innovative • entrepreneurial • global

www.utm.mv

One-Way ANOVA with Equal Sample Sizes

- The critical value of F:
 - numerator degrees of freedom = k 1
 - denominator degrees of freedom = k(n 1)
 - k = number of population or treatments being compared.
 - n = sample size

innovative • entrepreneurial • global

Table below lists the head injury to car crash test dummies for four different types of cars. Use a 0.05 significance level to test the null hypothesis that the different types of car have the same mean.

No. of head injury				
Subcompact Cars	Compact Cars	Midsize Cars	Full-Size Cars	
681	643	469	384	
428	655	727	656	
917	442	525	602	
898	514	454	687	
420	525	259	360	

innovative • entrepreneurial • global

MANAGEMENT OF

Example 1

• Step 1: Define hypothesis.

 $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$

 H_1 : at least one mean is different.

• Step 2: For each category, find n, \overline{x} and s

innovative • entrepreneurial • global

• Category 1: (Subcompact Cars)

$$n = 5$$

$$\overline{x} = \frac{681 + 428 + 917 + 898 + 420}{5} = 668.8$$

$$s = \sqrt{\frac{(681 - 668.8)^2 + (428 - 668.8)^2 + (917 - 668.8)^2 + (898 - 668.8)^2 + (420 - 668.8)^2}{5 - 1}}$$

$$= 242.0$$

Category 2: (Compact Cars)

$$n = 5$$

$$\bar{x} = \frac{643 + 655 + 442 + 514 + 525}{5} = 555.8$$

$$s = \sqrt{\frac{(643 - 555.8)^2 + (655 - 555.8)^2 + (442 - 555.8)^2 + (514 - 555.8)^2 + (525 - 555.8)^2}{5 - 1}}$$

$$= 91.0$$

innovative • entrepreneurial • globa

www.utm.mv

Example 1

Category 3: (Midsize Cars)

• Category 4: (Fullsize Cars)

$$n = 5$$

$$\bar{x} = \frac{384 + 656 + 602 + 687 + 360}{5} = 537.8$$

$$s = \sqrt{\frac{(384 - 537.8)^2 + (656 - 537.8)^2 + (602 - 537.8)^2 + (687 - 537.8)^2 + (360 - 537.8)^2}{5 - 1}}$$

$$= 154.6$$

innovative \bullet entrepreneurial \bullet global

10

• Step 3: Find variance between samples

Step 3a: Find mean between samples

$$\overline{\overline{x}} = \frac{668.8 + 555.8 + 486.8 + 537.8}{k = 4} = 562.3$$

Step 3b: Find standard deviation between samples

$$s_{\bar{x}} = \sqrt{\frac{(668.8 - 562.3)^2 + (555.8 - 562.3)^2 + (486.8 - 562.3)^2 + (537.8 - 562.3)^2}{4 - 1}}$$
= 76.779

Step 3c: Find variance between samples

$$ns_{\bar{x}}^2 = 5(76.779)^2 = 29475.1$$

innovative • entrepreneurial • global

1

www.utm.mv

Example 1

• Step 4: Find variance within samples

$$s_p^2 = \frac{(242.0)^2 + (91.0)^2 + (167.7)^2 + (154.6)^2}{k = 4}$$

= 29717.4

• Step 5: Calculate test statistic, F

$$F = \frac{\text{variance between samples}}{\text{variance within samples}} = \frac{ns_{\bar{x}}^2}{s_p^2}$$
$$= \frac{29475 \cdot 1}{29717 \cdot 4}$$
$$= 0.992$$

innovative • entrepreneurial • global

1

- Step 6: Calculate numerator and denominator degree of freedom
 - Numerator = k 1 = 4 1 = 3
 - Denominator = k(n-1) = 4(5-1) = 16
- Step 7: Find critical value of F with α = 0.05 from F-distribution table
 - *F* critical value = 3.2389

innovative • entrepreneurial • global

13

www.utm.mv

Example 1

- Step 8: Test the claim and state the conclusion.
 - Since $F_{test\ statistic}$ < $F_{critical\ value}$ (0.992 < 3.2389), we fail to reject the null hypothesis.
 - There is sufficient evidence to claim that the different types of cars have the same mean for head injury.

innovative • entrepreneurial • global

14

Table below lists the chest deceleration to car crash test dummies for four different types of cars. Use a 0.05 significance level to test the null hypothesis that the different types of car have the same mean.

Subcompact Cars	Compact Cars	Midsize Cars	Full-Size Cars
n = 5	n = 5	n = 5	n = 5
$\overline{x} = 50.4$	$\overline{x} = 53.0$	$\overline{x} = 48.8$	$\bar{x} = 46.0$
s = 6.69	s = 4.64	s = 3.35	s = 7.11

innovative • entrepreneurial • globa

15

vww.utm.mv

Example 2

• Step 1: State the hypothesis.

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$$

 H_1 : at least one mean is different.

- Step 2: (Done refer table).
- Step 3: Find variance between samples

Step 3a: Find mean between samples

$$\overline{\overline{x}} = \frac{50.4 + 53.0 + 48.8 + 46.0}{4} = 49.55$$

Step 3b: Find standard deviation between samples

$$s_{\bar{x}} = \sqrt{\frac{(50.4 - 49.55)^2 + (53.0 - 49.55)^2 + (48.8 - 49.55)^2 + (46.0 - 49.55)^2}{4 - 1}}$$

$$= 2.93$$

Step 3c: Find variance between samples

$$ns_{\bar{x}}^2 = 5(2.93)^2 = 42.92$$

innovative • entrepreneurial • global

16

• Step 4: Find variance within samples

$$s_p^2 = \frac{(6.69)^2 + (4.64)^2 + (3.35)^2 + (7.11)^2}{4}$$

= 32.02

• Step 5: Calculate test statistic, F

$$F = \frac{\text{variance between samples}}{\text{variance within samples}} = \frac{ns_{\bar{x}}^2}{s_p^2}$$
$$= \frac{42.92}{32.02}$$
$$= 1.34$$

innovative • entrepreneurial • global

1

www.utm.mv

Example 2

- Step 6: Calculate numerator and denominator degree of freedom
 - Numerator = k 1 = 4 1 = 3
 - Denominator = k(n-1) = 4(5-1) = 16
- Step 7: Find critical value of F with α = 0.05 from F-distribution table
 - *F* critical value = 3.2389

innovative • entrepreneurial • global

18

- Step 8: Test the claim and state the conclusion.
 - Since $F_{test \, statistic} < F_{critical \, value}$ (1.34 < 3.2389), we fail to reject the null hypothesis.
 - There is sufficient evidence to claim that the different types of cars have the same mean for chest deceleration.

innovative • entrepreneurial • globa

19

www.utm.mv

Exercise

Table 1 lists the body temperatures of 5 randomly selected subjects from each of 3 different age groups. Informal examination of the 3 sample means (97.940, 98.580, 97.800) seems to suggest that the 3 samples come from populations with means that are not significantly different. Test the claim that the 3 age-group populations have the same mean body temperature. Use α = 0.05.

innovative • entrepreneurial • global

20

Exercise

Table 1: Body Temperature (°F) Categorized by Age

18-20	21-29	30 and older
98.0	99.6	98.6
98.4	98.2	98.6
97.7	99.0	97.0
98.5	98.2	97.5
97.1	97.9	97.3

n ₁ =5	n ₂ =5	n ₃ =5
Mean: X ₁ =97.940	$x_2 = 98.580$	$x_3 = 97.800$
Std. Dev: S ₁ =0.568	$s_2 = 0.701$	$s_3 = 0.752$

innovative • entrepreneurial • global

.