

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

## **SCSI2134: PROBABILITY & STATISTICAL DATA ANALYSIS**

# **CHAPTER 1**

# **Introduction to Statistics**

innovative • entrepreneurial • global

www.utm.my

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

## **Introduction to Statistics**

- Statistics?

Dad, is this completely safe?

Research in 500 theme parks in 2010 showed that 1 in 10,000 of the carriages were found to be malfunctioning, which can lead to 1 out 50,000 kids falling out ... So your chances are okay, but there's always a risk, honey ...

People working in statistics are not always the perfect parents

innovative • entrepreneurial • global

www.utm.my

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

# Introduction to Statistics

Number of fatal road accidents up in 2016, more than 7,000 lives lost



KUALA LUMPUR: In 2016, total of 7,152 people died in road accidents in Malaysia, an alarming jump from 6,706 deaths in the year before, Transport Minister Datuk Seri Liow Tiong Lai announced today.

"Despite the number of campaigns and initiatives conducted by the government, the painful reality is that the accident rate keeps increasing every year.

"It's too late when tragic accidents like the bus crash in Pagoh, which claimed 14 lives, occur. There is no use accusing anyone and finger pointing then," he said at the launch of the Chinese New Year Road Safety campaign in Sunway Pyramid here.

He added that of that number, 62.7 per cent of the deaths involved motorcyclists in 2016.

"In 2016, 6,570 fatal road accidents involving were recorded while in 2015 there were 6,193 of such cases.

Liow said a total of 521,466 accidents were recorded in 2016, an increase from 489,606 in 2015.

"A total of 80.6 per cent of the road accidents are caused by human error.

"I hope that those on the road this festive season do not speed to their destination (just) to arrive early and gamble their lives or that of their loved ones. It's okay to be late as long as you are safe," he advised.

The joint campaign involving the police and other transport authorities like the Road Transport Department will begin on Jan 21 and end on Feb 5.

He also said that there would be increased patrols by authorities at 102 road accident hotspots nationwide.

innovative • entrepreneurial • global

www.utm.my

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

# Introduction to Statistics

Department of Statistics Malaysia  
<https://www.dosm.gov.my>

**MARRIAGE & DIVORCE MALAYSIA, 2018**



**2017**

**GENERAL MARRIAGE RATE**

| Category | Rate |
|----------|------|
| GROOM    | 47.2 |
| BRIDE    | 44.0 |

**GENERAL DIVORCE RATE**

| Category | Rate |
|----------|------|
| MALE     | 6.5  |
| FEMALE   | 7.0  |

**MEDIAN AGE, 2017**

| Category | Age |
|----------|-----|
| MARRIAGE | 29  |
| AGE      | 26  |
| DIVORCE  | 37  |
| AGE      | 34  |

THE HIGHEST NUMBER OF MARRIAGES AT AGE 25-29 YEARS, 2017

MORE DIVORCEES AT AGE 30-34 YEARS, 2017

innovative • entrepreneurial • global

www.utm.my

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

# Introduction to Statistics

**facebook** Community Update 4.27.2016

1.65 Billion on Facebook each month    1 Billion on WhatsApp each month    900 Million on Messenger each month    400 Million on Instagram each month

**LIVE** Live Video Launched worldwide    **Connectivity** 25 million connected via Internet.org    **Artificial Intelligence** Access for the blind and visually impaired    **Oculus Rift** Shipped with 50+ games and apps

Introduced Reactions: Like, Love, Haha, Wow, Sad, Angry

innovative • entrepreneurial • global    www.utm.my

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

# Introduction to Statistics

- Even though you may not have realized it, you probably have made some statistical statements in your everyday conversation or thinking.
- Statements like "I sleep for about eight hours per night on average" and "You are more likely to pass the exam if you start preparing earlier" are actually statistical in nature.

innovative • entrepreneurial • global    www.utm.my



## Introduction to Statistics

- We encounter data and conclusions based on data every day.
- Statistics is the scientific discipline that provides methods to help us make sense of data.
- Statistical methods are used in business, medicine, agriculture, social sciences, natural sciences, and applied sciences, such as engineering.
- The field of statistics teaches us how to make intelligent judgments and informed decisions in the presence of uncertainty and variation.



## Introduction to Statistics

- Statistics is the scientific application of mathematical principles to the collection, analysis, and presentation of numerical data.
- Statistics is a discipline which is concerned with:
  - designing experiments and other data collection,
  - summarizing information to aid understanding,
  - drawing conclusions from data, and
  - estimating the present or predicting the future.
- There are 2 main branches of statistics:
  - Descriptive
  - Inferential

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

# Introduction to Statistics

```

graph TD
    Statistics[Statistics] --> Descriptive[Descriptive Statistics]
    Statistics --> Inferential[Inferential Statistics]
    Descriptive --- Description1[Presenting, organizing and summarizing data]
    Inferential --- Description2[Drawing conclusions about a population based on data observed in a sample]
  
```

**Statistics**

**Descriptive Statistics**

Presenting, organizing and summarizing data

**Inferential Statistics**

Drawing conclusions about a population based on data observed in a sample

innovative • entrepreneurial • global

www.utm.my

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

# Introduction to Statistics

- **Descriptive statistics** are used to describe the basic features of the data gathered from an experimental study in various ways.
- The techniques are commonly classified as:
  - Graphical description in which we use graphs to summarize data.
  - Tabular description in which we use tables to summarize data.
  - Parametric description in which we estimate the values of certain parameters which we assume to complete the description of the set of data.

innovative • entrepreneurial • global

www.utm.my

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

# Descriptive Statistics

Graphical description

Example:  
Graph  
Bar chart  
Pie chart



innovative • entrepreneurial • global

[www.utm.my](http://www.utm.my)

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

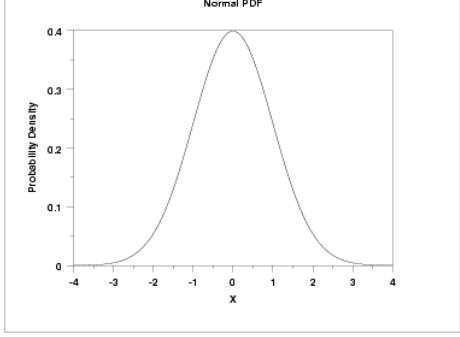
# Descriptive Statistics

Tabular description

Example:  
Frequency Table

| Score | Frequency |
|-------|-----------|
| 0     | 2         |
| 1     | 5         |
| 2     | 8         |
| 3     | 6         |
| 4     | 4         |
| 5     | 3         |

innovative • entrepreneurial • global


[www.utm.my](http://www.utm.my)

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

# Descriptive Statistics

## Parametric description

|                    |                              |
|--------------------|------------------------------|
| Mean               | $\mu$                        |
| Median             | $\mu$                        |
| Mode               | $\mu$                        |
| Range              | Infinity in both directions. |
| Standard Deviation | $\sigma$                     |
| Skewness           | 0                            |
| Kurtosis           | 3                            |



Normal PDF

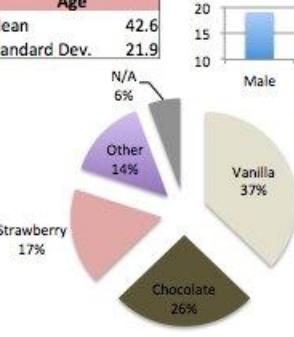
innovative • entrepreneurial • global www.utm.my

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

# Example

| A  | B            | C   | D      |
|----|--------------|-----|--------|
| 1  | Respondent # | Age | Gender |
| 2  | 1            | 36  | m      |
| 3  | 2            | 22  | f      |
| 4  | 3            | 61  | m      |
| 5  | 4            | 88  | m      |
| 6  | 5            | 31  | m      |
| 7  | 6            | 53  | m      |
| 8  | 7            | 30  | f      |
| 9  | 8            | 64  | f      |
| 10 | 9            | 18  | m      |
| 11 | 10           | 16  | f      |
| 12 | 11           | 83  | m      |
| 13 | 12           | 16  | f      |
| 14 | 13           | 94  | m      |
| 15 | 14           | 55  | m      |
| 16 | 15           | 42  | f      |
| 17 | 16           | 18  | f      |
| 18 |              | 61  | f      |

Raw Data




| Age           |      |
|---------------|------|
| Mean          | 42.6 |
| Standard Dev. | 21.9 |

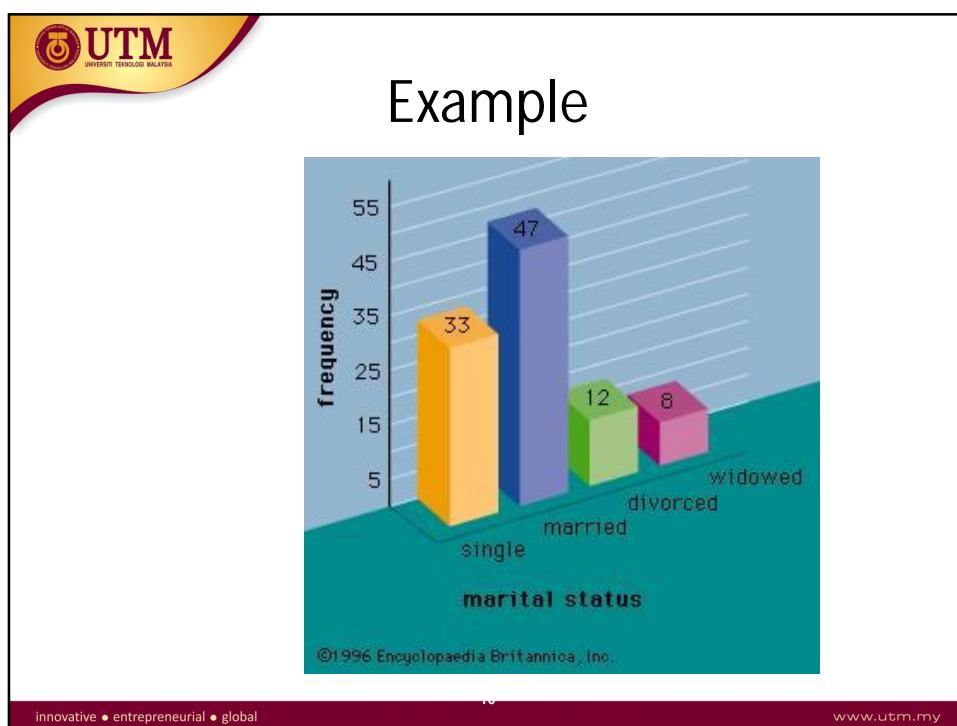
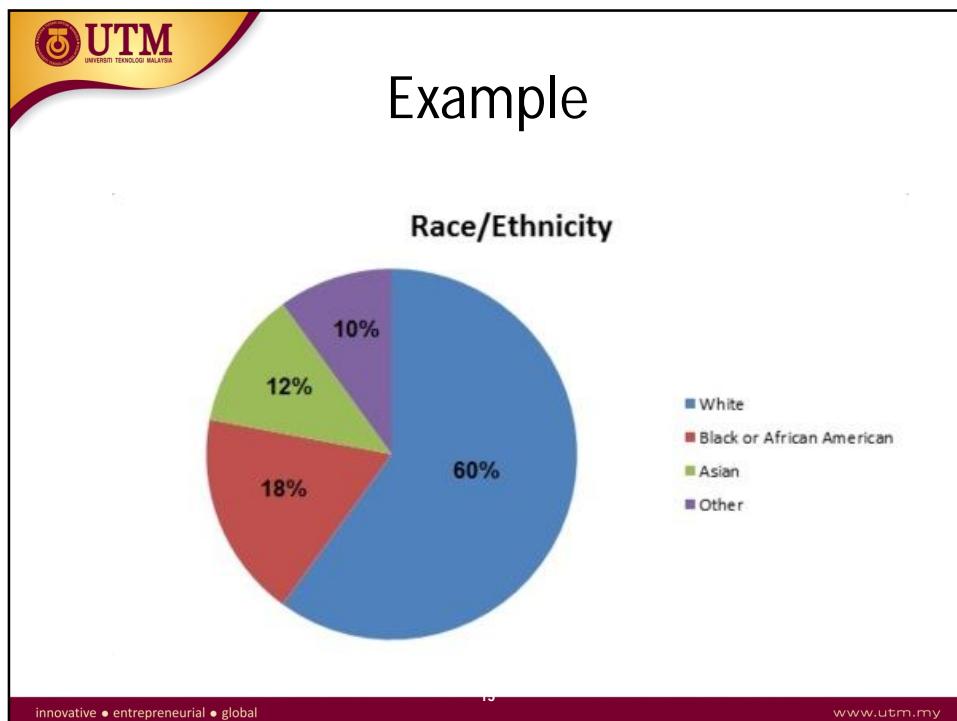


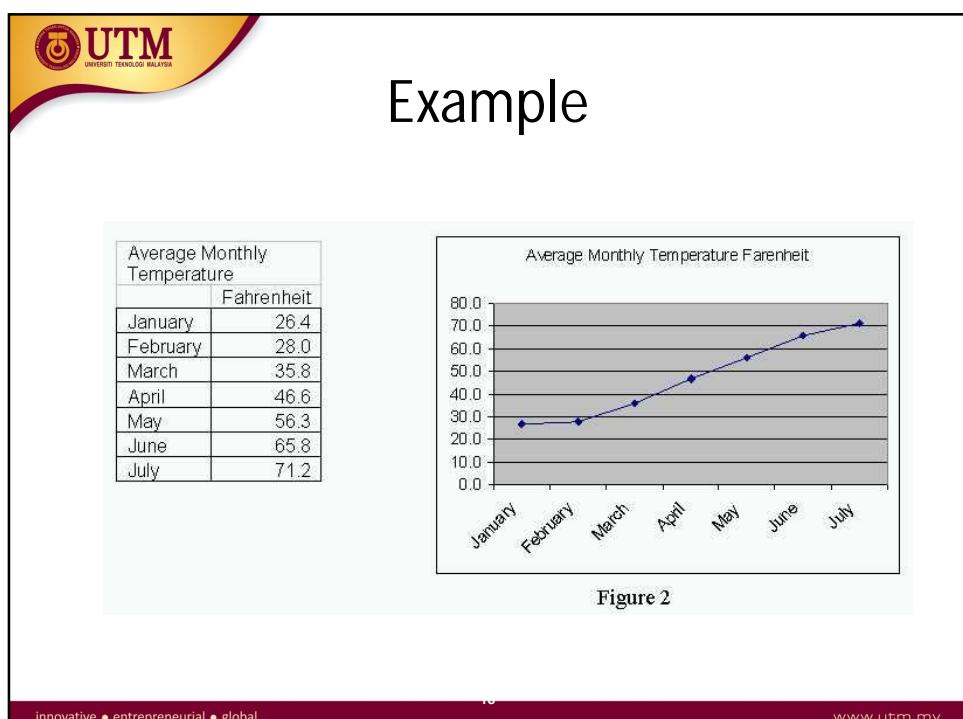
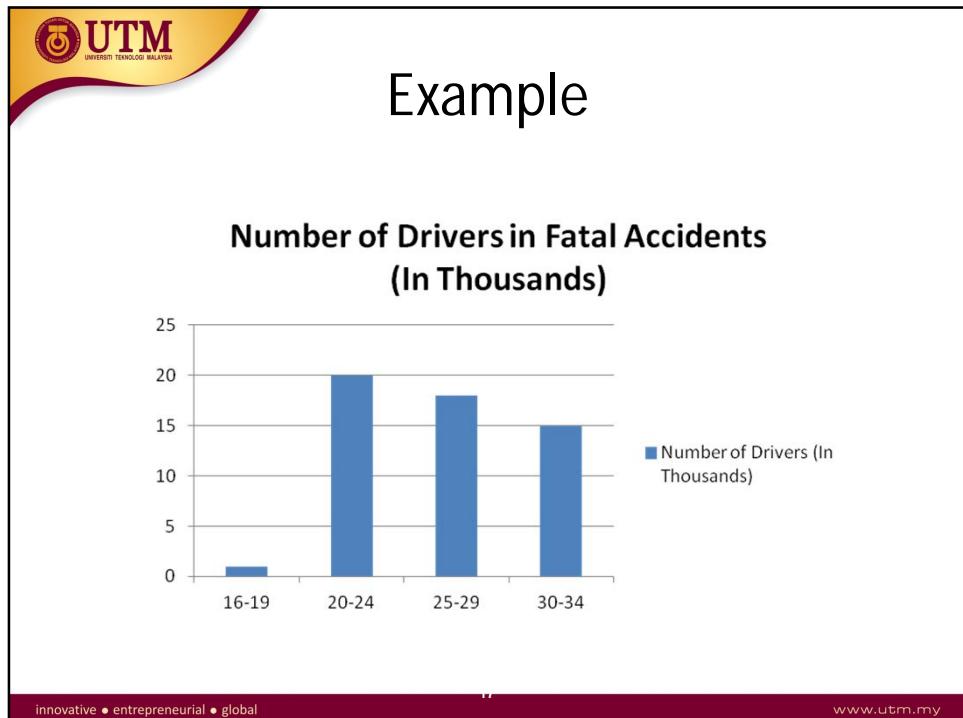
Age

Mean: 42.6  
Standard Dev.: 21.9



Gender



|        |    |
|--------|----|
| Male   | 20 |
| Female | 15 |



Ice Cream Flavor


|            |     |
|------------|-----|
| Vanilla    | 37% |
| Chocolate  | 26% |
| Strawberry | 17% |
| Other      | 14% |
| N/A        | 6%  |

innovative • entrepreneurial • global www.utm.my

7








## Example

|    | A        | B        | C | D                  | E        | F                  | G        |
|----|----------|----------|---|--------------------|----------|--------------------|----------|
| 5  | Sample 1 | Sample 2 |   | Sample 1           |          | Sample 2           |          |
| 6  | 19       | 12       |   |                    |          |                    |          |
| 7  | 41       | 27       |   | Mean               | 30.46154 | Mean               | 30.61538 |
| 8  | 29       | 18       |   | Standard Error     | 4.673459 | Standard Error     | 5.447345 |
| 9  | 18       | 23       |   | Median             | 29       | Median             | 27       |
| 10 | 8        | 72       |   | Mode               | 29       | Mode               | 27       |
| 11 | 29       | 27       |   | Standard Deviation | 16.8504  | Standard Deviation | 19.64068 |
| 12 | 11       | 27       |   | Sample Variance    | 283.9359 | Sample Variance    | 385.7564 |
| 13 | 59       | 53       |   | Kurtosis           | -1.15073 | Kurtosis           | 0.062841 |
| 14 | 41       | 3        |   | Skewness           | 0.265601 | Skewness           | 0.78698  |
| 15 | 48       | 45       |   | Range              | 51       | Range              | 69       |
| 16 | 53       | 53       |   | Minimum            | 8        | Minimum            | 3        |
| 17 | 29       | 13       |   | Maximum            | 59       | Maximum            | 72       |
| 18 | 11       | 25       |   | Sum                | 396      | Sum                | 398      |
| 19 |          |          |   | Count              | 13       | Count              | 13       |

innovative • entrepreneurial • global 20 [www.utm.my](http://www.utm.my)

**Example**

**Table 2 – Clinical and demographic characteristics of patients undergoing pharmacological prophylaxis.**

| Variable                 | Minimum | Maximum | Average | Standard deviation |
|--------------------------|---------|---------|---------|--------------------|
| Age (years)              | 24      | 71      | 40.35   | 8.829              |
| Weight (kg)              | 50      | 130     | 71.43   | 12.211             |
| Height (cm)              | 148     | 184     | 162.75  | 5.980              |
| BMI (kg/m <sup>2</sup> ) | 17.93   | 52.07   | 26.9731 | 4.43736            |
| Weight of the flap (g)   | 650     | 9200    | 1422.82 | 573.049            |
| Surgery time (min)       | 55      | 240     | 135.30  | 41.267             |

BMI = body mass index; n = number of patients.

innovative • entrepreneurial • global

www.utm.my

**Example**

**TABLE 4**  
Descriptive statistics of students' attitudes toward statistics

|                             | <i>N</i> | Mode | s.d. | Skewness | Kurtosis |
|-----------------------------|----------|------|------|----------|----------|
| <b>Affect</b>               | 234      | 4.6  | 1.32 | -0.45    | 0.17     |
| <b>Cognitive Competence</b> | 232      | 5.33 | 1.16 | -0.19    | -0.62    |
| <b>Value</b>                | 234      | 4.88 | 1.12 | -0.62    | 0.25     |
| <b>Difficulty</b>           | 233      | 3.4  | 1.13 | -0.13    | -0.65    |
| <b>Interest</b>             | 231      | 7    | 1.26 | -1.03    | 1.09     |
| <b>Effort</b>               | 235      | 7    | 0.98 | -2.32    | 7.85     |

s.d. = standard deviation  
Higher value = more positive attitude

innovative • entrepreneurial • global

www.utm.my

## Example

| Variable         | Mean        | Std. Dev    | Min   | Max         |
|------------------|-------------|-------------|-------|-------------|
| Loans            | 0.204E + 07 | 0.234E + 07 | 0.000 | 0.178E + 08 |
| Deposits         | 0.370E + 07 | 0.430E + 07 | 0.000 | 0.368E + 08 |
| Physical capital | 0.488E + 07 | 0.534E + 07 | 0.000 | 0.422E + 08 |

Source: Banking Supervision Department, Bank of Ghana, and the ARB Apex Bank.

## Introduction to Statistics

- **Inferential statistics** are used to draw inferences about a population from a sample.
- It includes:
  - point estimation
  - interval estimation
  - hypothesis testing (or significance testing)
  - prediction

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

## Inference Process

The diagram illustrates the Inference Process as a circular cycle. It starts with a **Population** (represented by a group of diverse people) at the top right. A blue arrow points from the population down to a **Sample** (represented by a smaller group of people). A green arrow points from the sample up to **Sample Statistics** (represented by a person at a computer screen showing  $\bar{x}$  and  $\bar{p}$ ). A red arrow points from the sample statistics up to **Estimates, Tests and Conclusions** (represented by a person at a desk with a document). A pink arrow points from the estimates back down to the population.

Estimates,  
Tests and  
Conclusions

Population

Sample Statistics

$\bar{x}$   $\bar{p}$

Sample

25

innovative • entrepreneurial • global

www.utm.my

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

## Introduction to Statistics

The diagram compares **Descriptive** and **Inferential** statistics. On the left, a vertical red arrow points upwards from the descriptive level to the inferential level. The descriptive level is shown as a sample of 10 people standing in a row, each labeled with their height: 5', 5'2", 5'4", 5'5", 5'8", 5'10", 5'11", 6', and 6'1". The average height is labeled as **AVERAGE = 5' 7.3"**. The inferential level is shown as a much larger population of people in a large crowd. A red arrow points from the sample up to the population, indicating that descriptive statistics about a sample are used to make inferences about a larger population.

Inferential

Descriptive

Population

Sample

MIN 5' AVERAGE = 5' 7.3" MAX

26

innovative • entrepreneurial • global

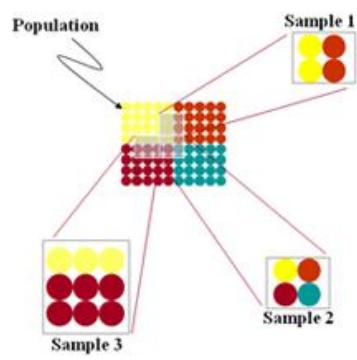
www.utm.my

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

## Population & Sample



A cartoon illustration of a student with a pink headband and a white lab coat holding a clipboard. The student is standing in front of a row of lockers. A speech bubble above the student says: "I can't ask everyone here. I think I'll need to get a sample."


innovative • entrepreneurial • global

www.utm.my

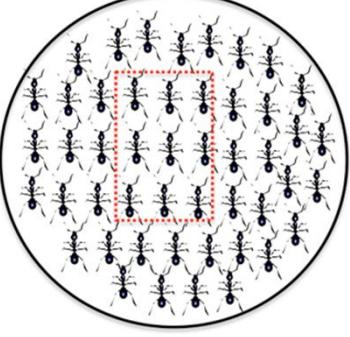
**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

## Population & Sample

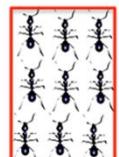
- The entire collection of individuals or objects about which information is desired is called the **population** of interest.
- A **sample** is a subset of the population, selected for study in some prescribed manner



A diagram showing a large grid of colored dots representing the population. Three smaller boxes to the right represent samples: Sample 1 (yellow and red dots), Sample 2 (red, yellow, and blue dots), and Sample 3 (yellow and red dots).


innovative • entrepreneurial • global

www.utm.my


**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

# Population & Sample

**Population (N)**

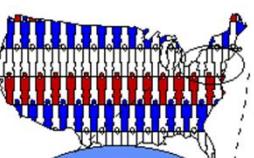


**Sample (n)**



innovative • entrepreneurial • global

29


www.utm.my

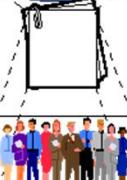
**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

# Population & Sample

**Who do you want to generalize to?**

**The Theoretical Population**




**What population can you get access to?**

**The Study Population**



**How can you get access to them?**

**The Sampling Frame**



**Who is in your study?**

**The Sample**

innovative • entrepreneurial • global

30

www.utm.my

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

## Population & Sample

**Population**  
quantity (count) =  $N$   
mean =  $\mu$   
variance =  $\sigma^2$   
standard deviation =  $\sigma$

**Sample**  
quantity (count) =  $n$   
mean =  $\bar{x}$   
variance =  $s^2$   
standard deviation =  $s$

51

innovative • entrepreneurial • global

www.utm.my

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

## Population & Sample

We want to know about these

Population

Parameter  $\mu$   
(Population mean)

We have these to work with

Random selection

Sample

Inference

$\bar{x}$  Statistic  
(Sample mean)

52

innovative • entrepreneurial • global

www.utm.my

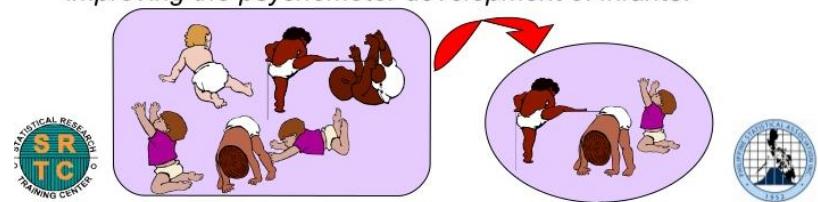
**Example**

The diagram illustrates the relationship between Variable, Statistic, and Parameter:

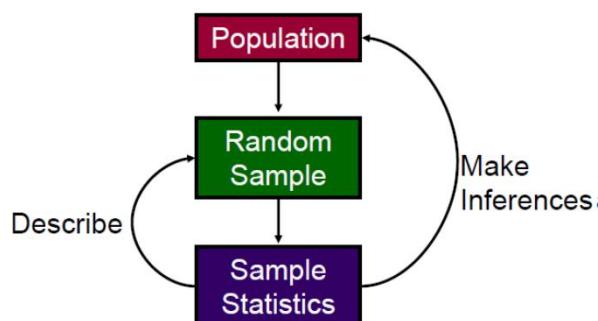
- Variable:** Represented by a clipboard with a list of responses (1, 2, 3, 4, 5, 6) and a pink ribbon labeled "response".
- Statistic:** Represented by a group of 10 people labeled "sample" and an average value of "Average = 3.75".
- Parameter:** Represented by a large group of people labeled "population" and an average value of "Average = 3.72".

innovative • entrepreneurial • global      55      www.utm.my

**Example**


The diagram illustrates the sampling process:

- Population:** Represented by a large light blue oval containing a smaller dark blue oval labeled "Sample". Text inside the population oval states "Mean,  $\mu$ , is unknown".
- Random Sample:** Represented by a smaller dark blue oval containing the text "Mean  $X = 50$ ".
- Illustration:** A cartoon character in a purple suit is shown with a speech bubble stating "I am 95% confident that  $\mu$  is between 40 & 60." A green arrow points from the population oval to the sample oval.


innovative • entrepreneurial • global      54      www.utm.my

## Example

A new milk formulation designed to improve the psychomotor development of infants was tested on randomly selected infants. Based on the results, it was concluded that the new milk formulation is effective in improving the psychomotor development of infants.



## Data Analysis Process



## Data Analysis Process

- Statistics involves the **collection** and **analysis** of data.
- Both task are critical.
- Raw data without analysis are of little value, and even a sophisticated analysis cannot extract meaningful information from data that were not collected in a sensible way.
- The data analysis process can be viewed as a sequence of steps that lead from planning to data collection to informed conclusions based on the resulting data.

## Data Analysis Process

- 6 steps:
  - Understanding the nature of the problem
  - Deciding what to measure and how to measure it
  - Data collection
  - Data summarization and preliminary analysis
  - Formal data analysis
  - Interpretation of results

## Data Analysis Process

1. Understanding the nature of the problem
  - An understanding of the research problem
  - Know the goal of the research and what questions we hope to answer
  - Have a clear direction before gathering data to lessen the chance of being unable to answer the questions of interest using the data collected.

## Data Analysis Process

2. Deciding what to measure and how to measure it
  - In some cases, the choice is obvious, e.g. in a study of the relationship between the weight of a football player and position played, you would need to collect data on player weight and position.



## Data Analysis Process

- but in other cases the choice of information is not as straightforward, e.g. in a study of the relationship between preferred learning style and intelligence, how would you define learning style and measure it and what measure of intelligence would you use?
- It is important to carefully define the variables to be studied and to develop appropriate methods for determining their values.

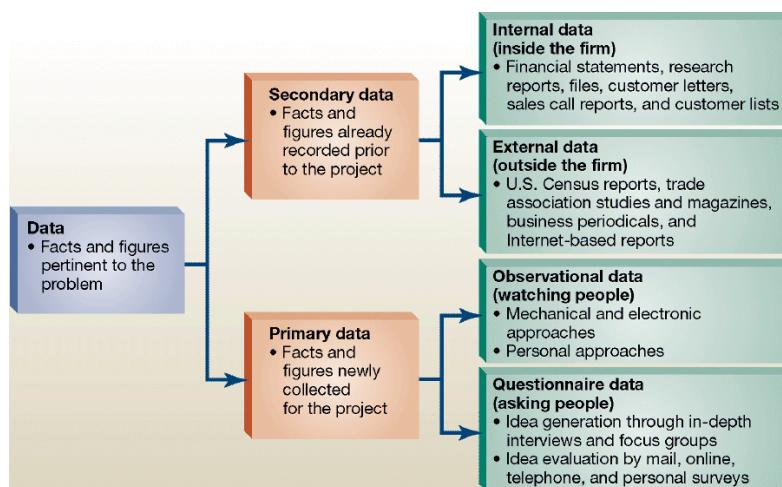
## Data Analysis Process

### 3. Data collection

- Decide whether an existing data source is adequate or whether new data must be collected.
- If a decision is made to use existing data (secondary data), it is important to understand how the data were collected and for what purpose.
- If new data are to be collected (primary data), a careful plan must be developed.
- The type of analysis that is appropriate and subsequent conclusions that can be drawn depend on how the data are collected.

## Data Analysis Process

4. Data summarization and preliminary analysis
  - Summarizing the data graphically and numerically
  - This initial analysis provides insight into important characteristics of the data and can provide guidance in selecting appropriate methods for further analysis.


## Data Analysis Process

5. Formal data analysis
  - Select and apply the appropriate inferential statistical methods.
6. Interpretation of results
  - What conclusions can be drawn from the analysis?
  - How do the result of the analysis inform us about the stated research problem or question?
  - How can our results guide future research?

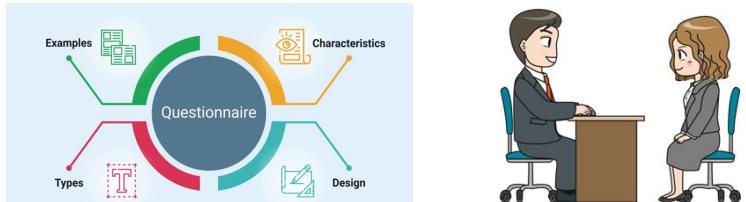
## Primary & Secondary Data

- **Secondary data** is data which has been collected by individuals or agencies for purposes other than those of our particular research study.
  - For example, if a government department has conducted a survey of, say, family food expenditures, then a food manufacturer might use this data in the organization's evaluations of the total potential market for a new product.
- **Primary data**, by contrast, are collected by the investigator conducting the research.

## Primary & Secondary Data



**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA


## Data Sources

Primary data: Experiment

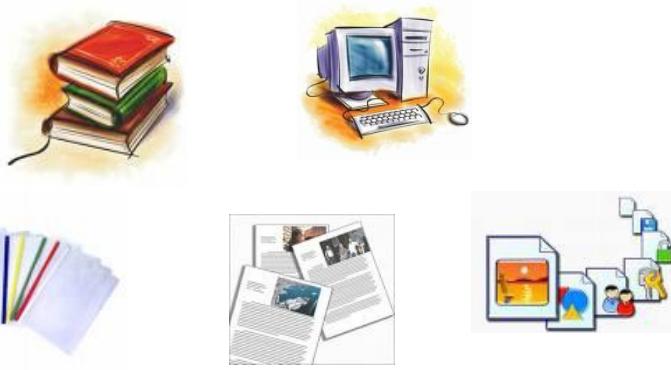


**Experiments**

Primary data: Survey (Questionnaire, Interview)



innovative • entrepreneurial • global


47

www.utm.my

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

## Data Sources

Secondary data: existing databases, record review



innovative • entrepreneurial • global

48

www.utm.my

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

## Qualitative & Quantitative Data

| Qualitative Data                                                                                                                                                                                                                                      | Quantitative Data                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p><b>Overview:</b></p> <ul style="list-style-type: none"> <li>Deals with descriptions.</li> <li>Data can be observed but not measured.</li> <li>Colors, textures, smells, tastes, appearance, beauty, etc.</li> <li>Qualitative → Quality</li> </ul> | <p><b>Overview:</b></p> <ul style="list-style-type: none"> <li>Deals with numbers.</li> <li>Data which can be measured.</li> <li>Length, height, area, volume, weight, speed, time, temperature, humidity, sound levels, cost, members, ages, etc.</li> <li>Quantitative → Quantity</li> </ul> |

innovative • entrepreneurial • global

49  
www.utm.my

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

## Qualitative & Quantitative Data

Example 1:

- Oil Painting*



|                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p><b>Qualitative data:</b></p> <ul style="list-style-type: none"> <li>blue/green color, gold frame</li> <li>smells old and musty</li> <li>texture shows brush strokes of oil paint</li> <li>peaceful scene of the country</li> <li>masterful brush strokes</li> </ul> | <p><b>Quantitative data:</b></p> <ul style="list-style-type: none"> <li>picture is 10" by 14"</li> <li>with frame 14" by 18"</li> <li>weighs 8.5 pounds</li> <li>surface area of painting is 140 sq. in.</li> <li>cost \$300</li> </ul> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

innovative • entrepreneurial • global

www.utm.my

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

## Qualitative & Quantitative Data

Example 2:

- *Latte*



**Qualitative data:**

- robust aroma
- frothy appearance
- strong taste
- burgundy cup

**Quantitative data:**

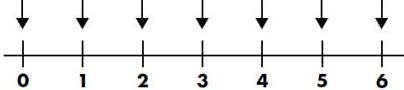

- 12 ounces of latte
- serving temperature 150° F.
- serving cup 7 inches in height
- cost \$4.95

innovative • entrepreneurial • global

51  
www.utm.my

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

## Qualitative & Quantitative Data




innovative • entrepreneurial • global

52  
www.utm.my

**Discrete & Continuous Data**

**Discrete** data can only take on certain individual values.



**Continuous** data can take on any value in a certain range.

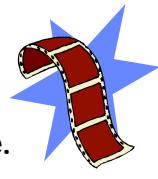


innovative • entrepreneurial • global

55

www.utm.my

**Discrete & Continuous Data**


**Example 1**

Number of pages in a book is a **discrete variable**.



**Example 2**

Length of a film is a **continuous variable**.



**Example 3**

Shoe size is a **Discrete variable**.  
E.g. 5, 5½, 6, 6½ etc. Not in between.



innovative • entrepreneurial • global


54

www.utm.my

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

## Discrete & Continuous Data

**Example 4**  
Temperature is a **continuous variable**.



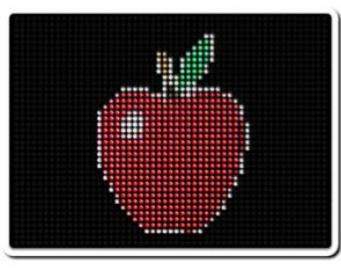
**Example 5**  
Number of people in a gathering is a **discrete variable**.



**Example 6**  
Time taken to run a race is a **continuous variable**.



55


innovative • entrepreneurial • global

www.utm.my

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

## Discrete & Continuous Data

### Discrete vs. Continuous



**LITE BRITE**  
discrete



**ETCH-A-SKETCH**  
continuous

56

innovative • entrepreneurial • global

www.utm.my

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

## Discrete & Continuous Data

Group the following as either discrete or continuous data.

57

innovative • entrepreneurial • global

www.utm.my

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

## Discrete & Continuous Data

**Discrete**

- Population of a town
- Number of matches in a box
- Number of goals in a season
- Shirt collar size

**Continuous**

- Volume of a cereal box
- Top speed of a car
- Length of a crocodile
- Temperature of oven

innovative • entrepreneurial • global

www.utm.my

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

## Discrete & Continuous Data

- How about money? Is it a discrete or continuous data?



Discrete!!  
But why?

55

innovative • entrepreneurial • global

www.utm.my

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

## Levels of Measurement

- There are four levels of data measurement. Ranked from top to bottom in order of complexity and information content these are:
  - Nominal scale
  - Ordinal scale
  - Interval scale
  - Ratio scale

66

innovative • entrepreneurial • global

www.utm.my

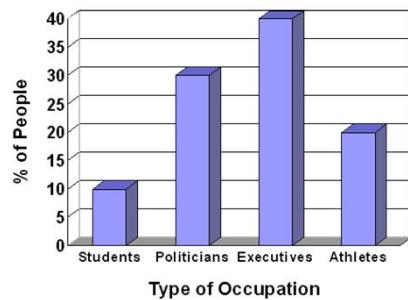
## Levels of Measurement

- Each level of measurement is characterized by its properties.
  - Nominal measurement has just one property: CLASSIFICATION.
  - Ordinal measurement has two properties: CLASSIFICATION and ORDER.
  - Interval measurement has three properties: CLASSIFICATION, ORDER and EQUAL INTERVALS.
  - Ratio data has four properties: CLASSIFICATION, ORDER, EQUAL INTERVALS and TRUE ZERO.

## Levels of Measurement - Nominal Scales

- **Properties:** classification
- **Observations reflect:** differences in kind
- **Examples:** gender, ethnic background, major in college
- Nominal measurement is simply concerned with sorting observations into categories.
- Because the single property of nominal data is classification it tells us nothing about differences in degree or amount.

## Levels of Measurement - Nominal Scales


- Numbers assigned to categories (as identification codes) have no numeric value (we cannot add, subtract, divide or multiply nominal data) and any ordering of categories is arbitrary.
- This is the most primitive form of measurement. The presence vs. absence of something is a form of nominal measurement ("do you smoke?" YES, NO).
- Although it is considered a form of measurement the collection of nominal data is more easily thought of as a sorting method.

## Levels of Measurement - Nominal Scales

### Example

**Nominal Data**

|       |         |        |          |          |
|-------|---------|--------|----------|----------|
| Point | airport | town   | mine     | capital  |
| Line  | river   | road   | boundary | pipeline |
| Area  | orchard | desert | forest   | water    |



**Survey on Why People Travel**

| Reason                     | Percentage |
|----------------------------|------------|
| Visit Friends or Relatives | 33%        |
| Leisure                    | 30%        |
| Work-related               | 22.5%      |
| personal business          | 14.6%      |

**Students and Sports**

| Sport      | Number of Students |
|------------|--------------------|
| Tennis     | 368                |
| Gymnastics | 125                |
| Basketball | 452                |
| Base ball  | 380                |
| Athletics  | 275                |
| None       | 377                |

innovative • entrepreneurial • global

www.utm.my

**Levels of Measurement**  
- Nominal Scales

|                                                                                                              |                                                                                                                                                                                                                           |                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>What is your gender?</b><br><input checked="" type="radio"/> M – Male<br><input type="radio"/> F – Female | <b>What is your hair color?</b><br><input checked="" type="radio"/> 1 – Brown<br><input type="radio"/> 2 – Black<br><input type="radio"/> 3 – Blonde<br><input type="radio"/> 4 – Gray<br><input type="radio"/> 5 – Other | <b>Where do you live?</b><br><input checked="" type="radio"/> A – North of the equator<br><input type="radio"/> B – South of the equator<br><input type="radio"/> C – Neither: In the international space station |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Sometimes numbers are used to designate category membership

Example:  
Country of Origin  
1 = United States      3 = Canada  
2 = Mexico      4 = Other

However, in this case, it is important to keep in mind that the numbers do not have intrinsic meaning

innovative • entrepreneurial • global

www.utm.my

## Levels of Measurement - Ordinal Scales

- **Properties:** classification, order  
**Observations reflect:** differences in degree  
**Examples:** Likert scale categories, rankings, academic letter grade, stages in development
- The distinctive property of ordinal measurement is order.
- On a typical Likert Scale "strongly agree" represents more agreement than "agree". However, we do not know how much more.

## Levels of Measurement - Ordinal Scales

### Example: The Likert Scale

|                                                                                                | Strongly Agree | Agree | Neither | Disagree | Strongly Disagree |
|------------------------------------------------------------------------------------------------|----------------|-------|---------|----------|-------------------|
| If the price of raw materials fell firms would reduce the price of their food products.        | 1              | 2     | 3       | 4        | 5                 |
| Without government regulation the firms would exploit the consumer.                            | 1              | 2     | 3       | 4        | 5                 |
| Most food companies are so concerned about making profits they do not care about quality.      | 1              | 2     | 3       | 4        | 5                 |
| The food industry spends a great deal of money making sure that its manufacturing is hygienic. | 1              | 2     | 3       | 4        | 5                 |
| Food companies should charge the same price for their products throughout the country          | 1              | 2     | 3       | 4        | 5                 |

**UTM** UNIVERSITI TEKNOLOGI MALAYSIA

## Levels of Measurement - Ordinal Scales

- Similarly if Jozan is ranked 1<sup>st</sup> for funniness, and Nabil is ranked 4<sup>th</sup> we have no way of knowing how much funnier Jozan is than Nabil.
- We cannot assume that they are four times funnier.
- They may be more or less than four times funnier.
- But we do know that they are more funny than Nabil, and more funny than the comedians ranked 2<sup>nd</sup> and 3<sup>rd</sup> places as well.
- We know about order but we have no information about the size of the interval between points.




innovative • entrepreneurial • global

www.utm.my

**UTM** UNIVERSITI TEKNOLOGI MALAYSIA

## Levels of Measurement -Ordinal Scales

**Example**

| Ordinal Data |                 |                     |                    |  |
|--------------|-----------------|---------------------|--------------------|--|
| <b>Point</b> | Airports        | Oil well production | Populated places   |  |
|              | ✗ international | high                | ● large            |  |
|              | ✗ national      | medium              | ● medium           |  |
| <b>Line</b>  | ✗ regional      | low                 | ● small            |  |
|              | Roads           | Drainage            | Boundaries         |  |
|              | expressway      | river               | international      |  |
| <b>Area</b>  | major           | stream              | provincial         |  |
|              | local           | creek               | county             |  |
|              | Soil quality    | Cost of living      | Industrial regions |  |
| good         | high            | major               |                    |  |
| fair         | medium          | minor               |                    |  |
| poor         | low             |                     |                    |  |

innovative • entrepreneurial • global

www.utm.my

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

## Levels of Measurement - Ordinal Scales

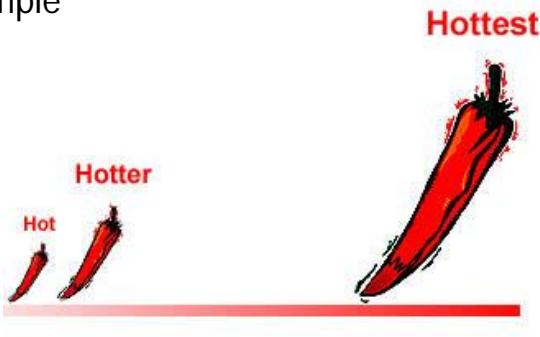
**Example**

**An ordinal data example**

How often do you eat cheese for breakfast?

|              | Code |
|--------------|------|
| always       | 6    |
| usually      | 5    |
| often        | 4    |
| sometimes    | 3    |
| occasionally | 2    |
| rarely       | 1    |
| never        | 0    |

"always" is clearly more frequent than "sometimes" but not necessarily twice as frequent, even though 6 = twice 3


innovative • entrepreneurial • global

www.utm.my

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

## Levels of Measurement - Ordinal Scales

**Example**



**Hottest**

**Hotter**

**Hot**

**The " Hot" Scale**

innovative • entrepreneurial • global

www.utm.my



## Levels of Measurement - Interval Scales

- **Properties:** classification, order, equal intervals  
**Observations reflect:** measurable differences in amount  
**Examples:** IQ scores, degrees of temperature,
- Essentially, interval data are ordinal, but they have an extra property - the ability to meaningfully add and subtract measurements.
- In interval-scaled data, the gaps between the numbers are comparable, unlike with ordinal data.
- Any interval has the same meaning regardless of its location on the scale. "X is five inches longer than Y" has meaning regardless of the values of X and Y.



## Levels of Measurement - Interval Scales

- However, ratios are meaningless on an interval scale because an interval scale has no true zero.
- Temperature scales are an example of this, so are decibel scales.
- Zero degrees Fahrenheit does not mean the total absence of temperature.
- Zero decibels does not mean there is no sound.

## Levels of Measurement - Interval Scales

- Furthermore, if it is 80 degrees outside today and it was only 40 degrees outside yesterday we cannot say that today is twice as hot as yesterday.
- Similarly a sound level of 80 dB is not twice as loud as a sound level of 40 dB.
- In short, if the data can be ordered and the arithmetic difference is meaningful, then the data are at least interval data.

## Levels of Measurement - Ratio Scales

- **Properties:** classification, order, equal intervals, true zero  
**Observations reflect:** measurable differences in total amount  
**Examples:** weight, income, family size, number of cows in a field
- Ratio data are the highest form of data measurement and the form we are most familiar with.
- For ratio data both differences and ratios are interpretable.
- Ratio data have a natural zero.

## Levels of Measurement - Ratio Scales

- Examples of ratio scale data are number of computers you own, weight, height, a bank balance, number of people watching a movie, goals scored by Brazil in the World Cup, etc.
- Ratio data look a lot like interval data.
- However, the zero point has a special meaning in ratio-scaled data: it indicates the absence of whatever property is being measured.

## Levels of Measurement - Ratio Scales

- Ratio data always have the flavor of counting: when you measure the amount of money that you have, you are counting up coins and bills.
- When you are measuring your height, you are counting the number of inches off the ground to the top of your head.
- Both ratio and interval data make use of a wide range of statistical analysis tools.

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

## Levels of Measurement

|                                             | NOMINAL | ORDINAL | INTERVAL | RATIO |
|---------------------------------------------|---------|---------|----------|-------|
| <b>Indicates Difference</b>                 | X       | X       | X        | X     |
| <b>Indicates Difference &amp; Direction</b> |         | X       | X        | X     |
| <b>Indicates Amount of Difference</b>       |         |         | X        | X     |
| <b>Absolute Zero</b>                        |         |         |          | X     |

| OK to compute....                                     | Nominal | Ordinal | Interval | Ratio |
|-------------------------------------------------------|---------|---------|----------|-------|
| frequency distribution.                               | Yes     | Yes     | Yes      | Yes   |
| median and percentiles.                               | No      | Yes     | Yes      | Yes   |
| add or subtract.                                      | No      | No      | Yes      | Yes   |
| mean, standard deviation, standard error of the mean. | No      | No      | Yes      | Yes   |
| ratio, or coefficient of variation.                   | No      | No      | No       | Yes   |

innovative • entrepreneurial • global 15  
www.utm.my

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

| Level of Measurement  | Properties                                                                                                                                     | Examples                                                                                                                                                                                   | Descriptive statistics                                                                                | Graphs                                                                                                       |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Nominal / Categorical | Discrete<br>Arbitrary<br>(no order)                                                                                                            | Dichotomous <ul style="list-style-type: none"> <li>• Yes / No</li> <li>• Gender</li> </ul> Types / Categories <ul style="list-style-type: none"> <li>• colour</li> <li>• shape</li> </ul>  | Frequencies<br>Percentage<br>Mode                                                                     | Bar<br>Pie                                                                                                   |
| Ordinal / Rank        | Ordered categories<br>Ranks                                                                                                                    | Ranking of favourites<br>Academic grades                                                                                                                                                   | Frequencies<br>Mode<br>Median<br>Percentiles                                                          | Bar<br>Pie<br>Stem & leaf                                                                                    |
| Interval              | Equal distances between values<br>Discrete (e.g., Likert scale)<br>Metric (e.g., deg. F)<br>Interval scales >5 can usually be treated as ratio | Discrete <ul style="list-style-type: none"> <li>- Thoughts, behaviours, feelings, etc. on a Likert scale</li> </ul> Metric <ul style="list-style-type: none"> <li>- Deg. C or F</li> </ul> | Frequencies<br>(if discrete)<br>Mode<br>(if discrete)<br>Median<br>Mean<br>SD<br>Skewness<br>Kurtosis | Bar<br>(if discrete)<br>Pie<br>(if discrete)<br>Median<br>Stem & Leaf<br>Boxplot<br>Histogram<br>(if metric) |
| Ratio                 | Continuous / Metric /<br>Meaningful 0 allows ratio statements (e.g., A is twice as large as B)                                                 | Age<br>Weight<br>VO <sub>2</sub> max<br>Deg. Kelvin                                                                                                                                        | Mean<br>SD<br>Skewness<br>Kurtosis                                                                    | Histogram<br>Boxplot<br>Stem&Leaf<br>(may need to round leafs)                                               |

innovative • entrepreneurial • global www.utm.my

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

## Levels of Measurement

| Statistic       | Nominal | Ordinal | Interval  | Ratio         |
|-----------------|---------|---------|-----------|---------------|
| Mode            | ✓       | ✓       | ✓         | If meaningful |
| Median          | X       | ✓       | ✓         | ✓             |
| Range, Min. Max | X       | ✓       | ✓         | ✓             |
| Mean            | X       | X       | If metric | ✓             |
| SD              | X       | X       | If metric | ✓             |

| Graph       | Nominal | Ordinal | Interval    | Ratio |
|-------------|---------|---------|-------------|-------|
| Bar / Pie   | ✓       | ✓       | If discrete | X     |
| Stem & Leaf | X       | ✓       | ✓           | ✓     |
| Boxplot     | X       | ✓       | ✓           | ✓     |
| Histogram   | X       | X       | If metric   | ✓     |

innovative • entrepreneurial • global www.utm.my

**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

## Levels of Measurement

**Ratio** Absolute zero

**Interval** Distance is meaningful

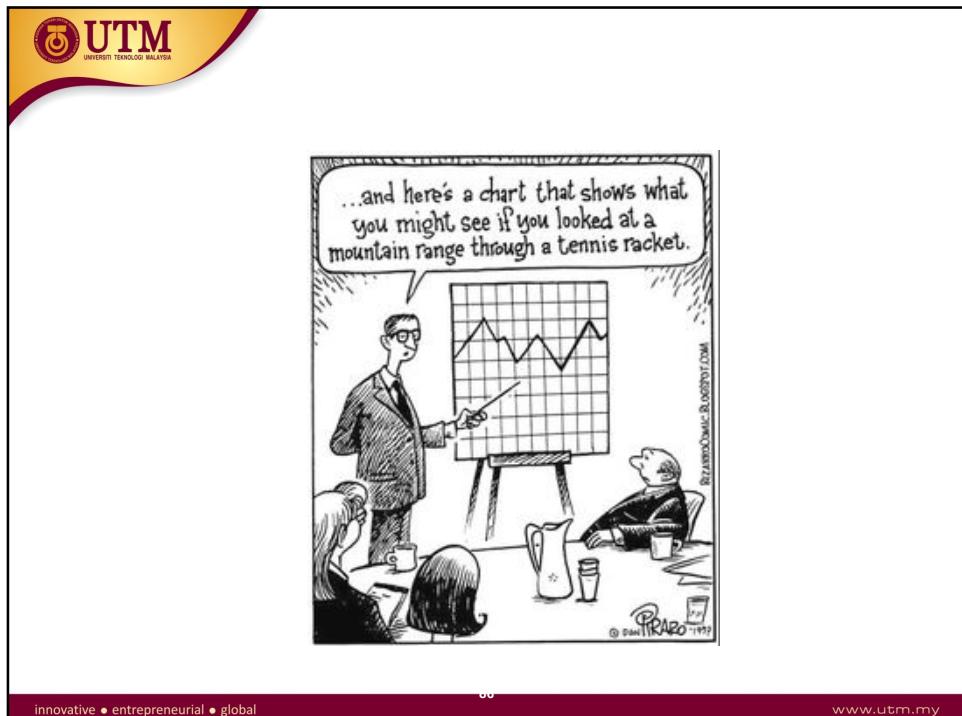
**Ordinal** Attributes can be ordered

**Nominal** Attributes are only named; weakest

"You can have data without information, but you cannot have information without data." —Daniel K. Moran

innovative • entrepreneurial • global www.utm.my

# Example


## Scales to classify different measurements

|             | Nominal | Ordinal | Interval | Ratio |
|-------------|---------|---------|----------|-------|
| Sex         | x       |         |          |       |
| Hair colour | x       |         |          |       |
| Pulse       |         |         |          | x     |
| Temp. °C    |         |         | x        |       |
| Team number | x       |         |          |       |
| Shoe size   |         | x       |          |       |
| Footed-ness | x       |         |          |       |

# Exercise

Identify the following as nominal level, ordinal level, interval level, or ratio level data.

1. Flavours of frozen yogurt
2. Amount of money in savings accounts
3. Students classified by their reading ability: Above average, Below average, Normal
4. Letter grades on an English essay
5. Religions
6. Commuting times to work
7. Ages (in years) of art students
8. Ice cream flavour preference
9. Years of important historical events
10. Instructors classified as: Easy, Difficult or Impossible

