
02: Introduction to Classes and
Objects

Programming Technique II

(SCSJ1023)

Adapted from Tony Gaddis and Barret Krupnow (2016), Starting out with
C++: From Control Structures through Objects

Content

 Defining classes

 Creating Object

 Private Members

- Why have private members ?

- Using private members function

 Separating Class Specification from Implementation

 Inline Member Functions

Defining Classes

Defining classes

 Classes are defined using keyword class, with the following
syntax:

 The declaration statements inside a class declaration are

for the variables/attributes and functions/methods that are
members of the class

Defining Class : Example

Defining Class : Access Specifiers

 Used to control access to members of the class

 public: can be accessed by functions outside of the class

 private: can only be called by or accessed by functions
that are members of the class

Defining Class
with Access Specifiers : Example

Private Members

Public Members

More on Access Specifiers

 Can be listed in any order in a class

 Can appear multiple times in a class

 If not specified, the default is private

Defining a Member Function

 When defining a member function:
 Put prototype in class declaration

 Define function/method using class name and scope resolution
operator (::)

Example

Using const With Member
Functions

 const appearing after the parentheses in a member
function declaration specifies that the function will not
change any data in the calling object.

Accessors and Mutators

 Mutator: a member function that stores a value in a private
member variable, or changes its value in some way

 Accessor: function that retrieves a value from a private
member variable. Accessors do not change an object's data,
so they should be marked const.

Creating Object

Creating Object

 An object is an instance of a class

 To define an object - defined like structure variables:

 Access members using dot operator:

Rectangle r;

r.setWidth(5.2);

cout << r.getWidth();

Compiler error if attempt to access private member using
dot operator

Program 2-1

class

declaration

Example: Define Class and Object

Program 2-1 (Continued)

Example: Define Class and Object

objects

definition

Program 2-1 (Continued)

Program 2-1 (Continued)

Private Members

Private Members

Why have private members ?

 Data can be accessed only through public functions

 Public functions define the class’s public interface

 Making data members private provides data
protection

Private Members : How to Access
Private Members?

 Code outside the class must use the class's public
member functions to interact with the object

Example

Separating Class Specification
from Implementation

Separating Class Specification from
Implementation

 Usually class declarations are stored in their own header files.

 Member function definitions are stored in their own .cpp files

 A header file that contains a class declaration is called a class
specification file.

 The name of the class specification file is usually the same as
the name of the class, with a .h extension

CONCEPT :

Separating Class Specification from
Implementation : example

 Place class declaration in a header file that serves as the
class specification file. Name the file ClassName.h, for
example, Rectangle.h

 Place member function definitions in ClassName.cpp,
(called implementation file) for example, Rectangle.cpp
File should #include the class specification file.

 Programs that use the class ,(called application file / driver
prog.) must #include the class specification file, and be
compiled and linked with the member function definitions.

// Specification file for the Rectangle class.

#ifndef RECTANGLE_H

#define RECTANGLE_H

// Rectangle class declaration.

class Rectangle

{

private:

double width;

double length;

public:

void setWidth(double);

void setLength(double);

double getWidth() const;

double getLength() const;

double getArea() const;

};

This directive tells the
preprocessor to see if a
constant named
RECTANGLE_H has not
been previously created
with a #define directive

If the RECTANGLE_H
constant has not been
defined, these lines are
included in the program.
Otherwise, these lines are
not included in the
program

Contents of Rectangle.h

Separating Class Specification tMyn 25

#ifndef RECTANGLE_H

#define RECTANGLE_H

class Rectangle

{

// Member declarations

// appear here.

};

#endif

The first included line defines the
RECTANGLE_H constant. If this file
is included again, the include guard
will skip its contents

// Implementation file for the Rectangle class

#include “Rectangle.h”

#include <iostream>

#include <cstdlib>

using namespace std;

// setWidth definition

// setLength definition

// getWidth definition

// getLength definition

// getArea definition

Contents of Rectangle.cpp

This directive includes the
Rectangle.h file, which

contains the Rectangle class
declaration.

// This program should be compiled with Rectangle.h file, Rectangle.cpp file

#include “Rectangle.h”

#include <iostream>

using namespace std;

int main()

{

Rectangle box; //Define an instance

double rectWidth; //Local variable

double rectLength; //Local variable

..

...

}

Main Program File
(Contents of useRectangle.cpp)

Separating Class Specification from
Implementation : Example

The implementation file Rectangle.cpp

The main program useRectangle.cpp

 Rectangle.obj and useRectangle.obj

Create an executable program

The specification file Rectangle.h

useRectangle.exe

useRectangle.cpp is compiled

and useRectangle.obj is created

Rectangle.cpp

(Implementation

File)

Rectangle.h

(Specification File)

useRectangle.cpp

(Main program

File)

Rectangle.obj

(Object file)

useRectangle.obj

(Object file)

useRectangle. exe

(Executable file)

Rectangle.h is

included in

Rectangle.cpp

Rectangle.h is

included in

useRectangle.cpp

Rectangle.cpp is compiled

and useRectangle.obj is created

Rectangle.obj and useRectangle.obj

are linked and useRectangle.exe is created

The process to create an executable program

Inline Member Functions

Inline Member Functions

Member functions can be defined

 inline: in class declaration

after the class declaration

 Data can be accessed only through public functions Inline appropriate for short function bodies:

int getWidth() const

{ return width; }

Example

Rectangle Class with Inline Member
Functions

class Rectangle

{

private:

double width;

double length;

public:

void setWidth(double);

void setLength(double);

double getWidth() const

{ return width; }

double getLength() const

{ return length; }

double getArea() const

{ return width * length; }

};

3 inline

member functions

Tradeoffs – Inline vs. Regular Member
Functions

 Code for an inline function is copied into program in place
of call – larger executable program, but no function call
overhead, hence faster execution

 Regular functions – when called, compiler stores return
address of call, allocates memory for local variables, etc.

