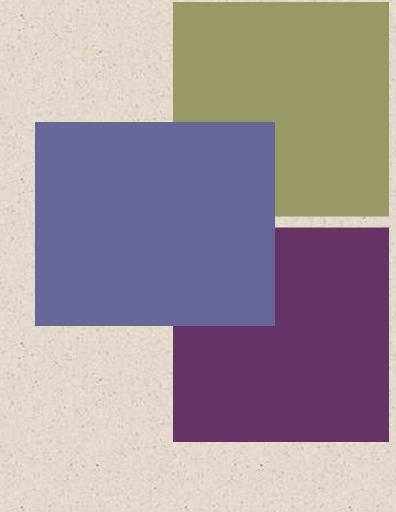


MODULE 2

William Stallings
Computer Organization
and Architecture
10th Edition



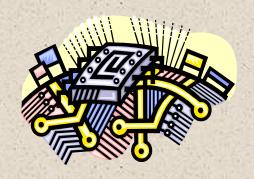
Chapter 10 Computer Arithmetic

Objectives

- Understand the fundamentals of numerical data representation and manipulation in digital computers.
- Master the skill of converting between various radix systems.
- Understand how errors can occur in computations because of overflow and truncation.
- Understand the fundamental concepts of floatingpoint representation.

10.1 Arithmetic & Logic Unit (ALU)

- Part of the computer that actually performs arithmetic and logical operations on data
- All of the other elements of the computer system are there mainly to bring data into the ALU for it to process and then to take the results back out
- Based on the use of simple digital logic devices that can store binary digits and perform simple Boolean logic operations



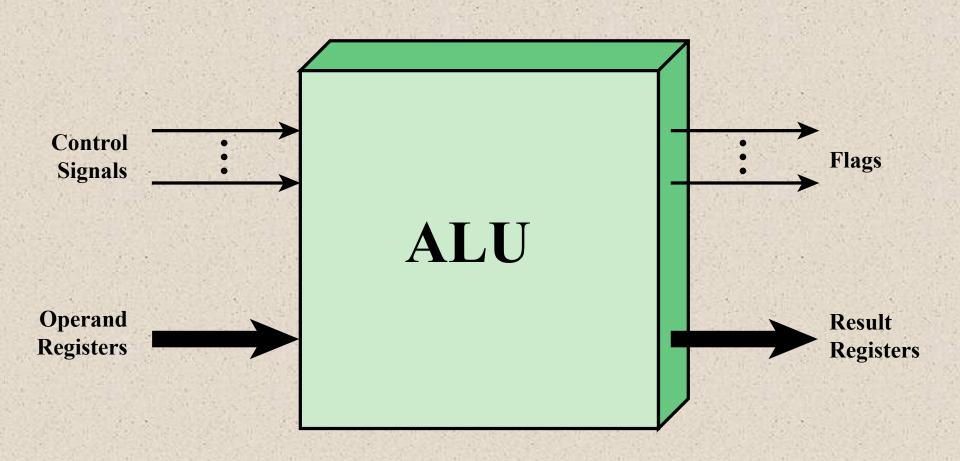


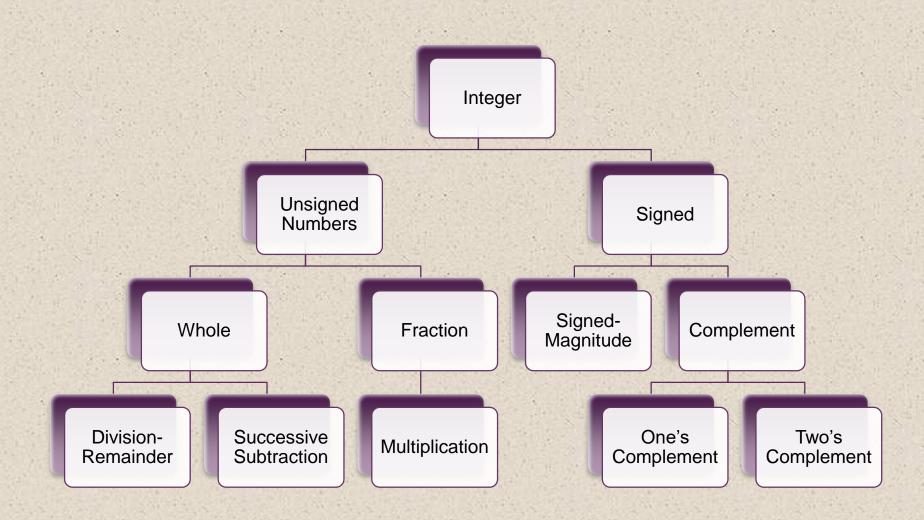
Figure 10.1 ALU Inputs and Outputs

10.2 Integer Representation

Sign-Magnitude Representation

+ Twos Complement Representation
Range Extension
Fixed-Point Representation

Numbers: overview



Unsigned Numbers

- For positive number only.
- Range number = 0 to $2^{n}-1$
- · There is no negative values representation.

If 32 bits long.

Range of numbers that can be represented = $0 \text{ to } (2^{32} - 1) = 0 \text{ to } 4,294,967,295$

Integer Representation

- In the binary number system arbitrary numbers can be represented with:
 - The digits zero and one
 - The minus sign (for negative numbers)
 - The period, or *radix point* (for numbers with a fractional component)
- For purposes of computer storage and processing we do not have the benefit of special symbols for the minus sign and radix point
- Only binary digits (0,1) may be used to represent numbers

Signed Numbers

Integers as binary values can be positive or negative.

Problem:

 How to represent and encode the actual sign of a number?

• Solution:

- Need code to represent the signs.
- Three signed representations covered:
 - Signed Magnitude
 - Ones Complement
 - Twos Complement

Sign-Magnitude Representation

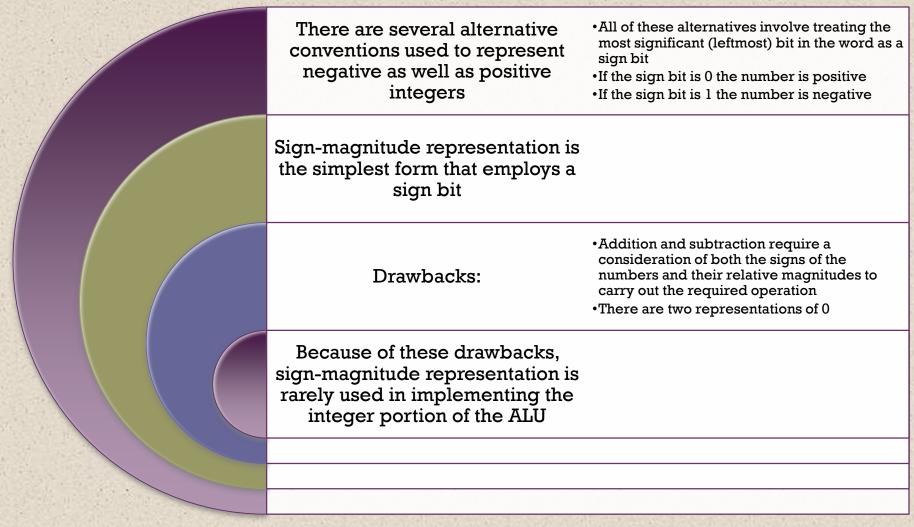


Table 10.1 Characteristics of Twos Complement Representation and Arithmetic

Range	-2_{n-1} through $2_{n-1} - 1$			
Number of Representations of Zero	One			
Negation	Take the Boolean complement of each bit of the corresponding positive number, then add 1 to the resulting bit pattern viewed as an unsigned integer.			
Expansion of Bit Length	Add additional bit positions to the left and fill in with the value of the original sign bit.			
Overflow Rule	If two numbers with the same sign (both positive or both negative) are added, then overflow occurs if and only if the result has the opposite sign.			
Subtraction Rule	To subtract B from A , take the twos complement of B and add it to A .			

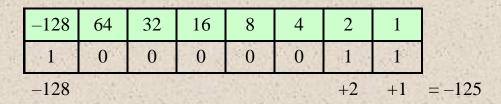
Table 10.2

Alternative Representations for 4-Bit Integers

Decimal Representation	Sign-Magnitude Representation	Twos Complement Representation	Biased Representation	
+8	_	_	1111	
+7	0111	0111	1110	
+6	0110	0110	1101	
+5	0101	0101	1100	
+4	0100	0100	1011	
+3	0011	0011	1010	
+2	0010	0010	1001	
+1	0001	0001	1000	
+0	0000	0000	0111	
-0	1000	_	—	
-1	1001	1111	0110	
-2	1010	1110	0101	
-3	1011	1101	0100	
-4	1100	1100	0011	
-5	1101	1011	0010	
-6	1110	1010	0001	
- 7	1111	1001	0000	
-8	_	1000	_	

-128	64	32	16	8	4	2	1
			(8)		36		

(a) An eight-position two's complement value box



(b) Convert binary 10000011 to decimal

(c) Convert decimal –120 to binary

Figure 10.2 Use of a Value Box for Conversion Between Twos Complement Binary and Decimal

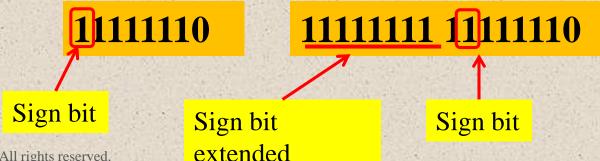
Range Extension

- Range of numbers that can be expressed is extended by increasing the bit length
- In sign-magnitude notation this is accomplished by moving the sign bit to the new leftmost position and fill in with zeros

00000010

00000000 00000010

- This procedure will not work for twos complement negative integers
 - Rule is to move the sign bit to the new leftmost position and fill in with copies of the sign bit
 - For positive numbers, fill in with zeros, and for negative numbers, fill in with ones
 - This is called sign extension



Fixed-Point Representation

The radix point (binary point) is fixed and assumed to be to the right of the rightmost digit

Programmer can use the same representation for binary fractions by scaling the numbers so that the binary point is implicitly positioned at some other location

10.3 Integer Arithmetic

Negation

Addition and Subtraction

Multiplication

Division

Negation

- Twos complement operation
 - Take the Boolean complement of each bit of the integer (including the sign bit)
 - Treating the result as an unsigned binary integer, add 1

$$+18 = 00010010$$

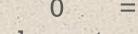
bitwise complement = 11101101
 $\frac{+}{11101110} = -18$ (twos complement)

■ The negative of the negative of that number is itself:

-18 = 11101110
bitwise complement = 00010001
$$\frac{+}{00010010}$$
 = +18 (twos complement)

+

Negation Special Case 1 (0)



Bitwise complement =

Add 1 to LSB

Result

00000000

+ 1

100000000 (twos complement)

Overflow is ignored, so:

$$-0 = 0$$

+

Negation Special Case 2 (-128)

$$+128 = 10000000$$

Bitwise complement = 01111111

Add 1 to LSB + 1

Result 10000000 (twos complement)

So:

-(-128) = -128 X

Monitor MSB (sign bit)

It should change during negation

Figure 10.3 Addition of Numbers in Twos Complement Representation

OVERFLOW RULE:

Overflow

If two numbers are added, and they are both positive or both negative, then overflow occurs if and only if the result has the opposite sign.

Rule

Operation	Operand A	Operand B	Result indicating overflow
A + B	≥0	≥ 0	< 0
A + B	< 0	< 0	≥ 0
A – B	≥ 0	< 0	< 0
A – B	< 0	≥ 0	≥ 0

Overflow in Humankind History

The \$7 billion Ariane 5 rocket, launched on June 4, 1996, veered off course 40 seconds after launch, broke up, and exploded. The failure was caused when the computer controlling the rocket overflowed its 16-bit range and crashed.

The code had been extensively tested on the Ariane 4 rocket. However, the Ariane 5 had a faster engine that produced larger values for the control computer, leading to the overflow.

SUBTRACTION RULE:

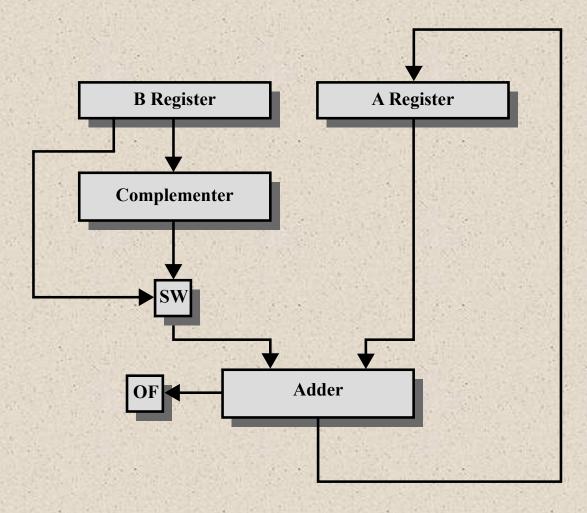
To subtract one number (subtrahend) from another (minuend), take the twos complement (negation) of the subtrahend and add it to the minuend.

Subtraction

Rule

$$\begin{array}{c} 0010 = 2 \\ +1001 = -7 \\ 1011 = -5 \end{array} & \begin{array}{c} 0101 = 5 \\ +1110 = -2 \\ 10011 = 3 \end{array} \\ \\ (a) \ M = 2 = 0010 \\ S = 7 = 0111 \\ -S = 1001 \end{array} & \begin{array}{c} (b) \ M = 5 = 0101 \\ S = 2 = 0010 \\ -S = 1110 \end{array} \\ \\ \begin{array}{c} 1011 = -5 \\ +1110 = -2 \\ 11001 = -7 \end{array} & \begin{array}{c} 0101 = 5 \\ +0010 = 2 \\ \hline 0111 = 7 \end{array} \\ \\ (c) \ M = -5 = 1011 \\ S = 2 = 0010 \\ -S = 1110 \end{array} & \begin{array}{c} (d) \ M = 5 = 0101 \\ S = -2 = 1110 \\ -S = 0010 \end{array} \\ \\ \begin{array}{c} 0111 = 7 \\ +0111 = 7 \\ 1110 = 0 \end{array} & \begin{array}{c} 1010 = -6 \\ +1100 = -4 \\ 10110 = 0 \end{array} \\ \\ (e) \ M = 7 = 0111 \\ S = -7 = 1001 \\ -S = 0111 \end{array} & \begin{array}{c} (f) \ M = -6 = 1010 \\ S = 4 = 0100 \\ -S = 1100 \end{array} \\ \end{array}$$

Figure 10.4 Subtraction of Numbers in Twos Complement Representation (M – S)



OF = overflow bit SW = Switch (select addition or subtraction)

Figure 10.6 Block Diagram of Hardware for Addition and Subtraction

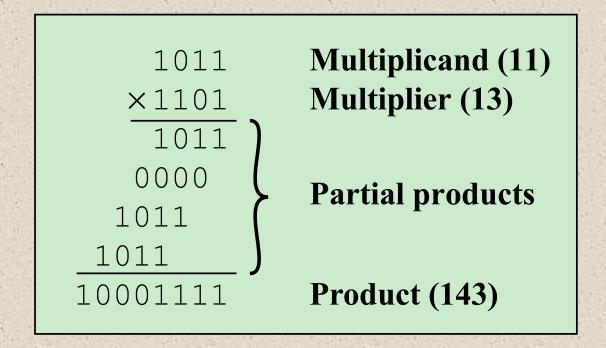
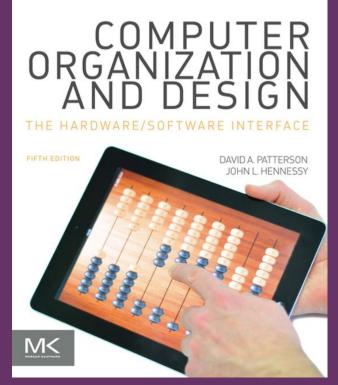


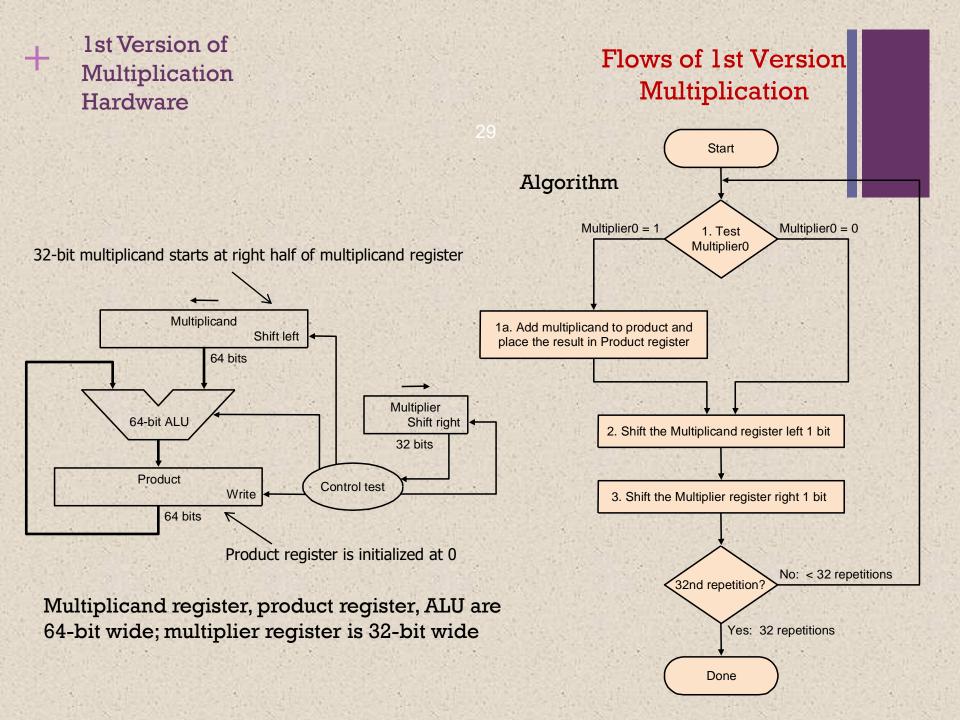
Figure 10.7 Multiplication of Unsigned Binary Integers

- Paper and pencil example (unsigned):
- 3 versions of multiply hardware & algorithm:
- successive refinement

Hardware implementation: multiplication & division

Refer to:
Chapter 3, page 184



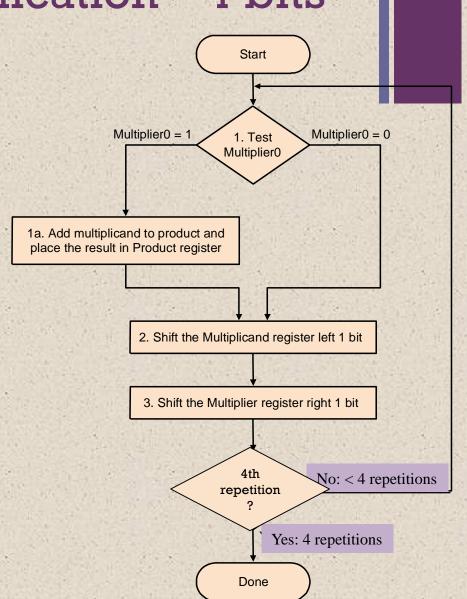


■ Example : $2 \times 3 = ?$

Multiplicand (MC)

Multiplier (MP) Product (P)

- $2 \times 3 \rightarrow 0010 \times 0011$
- Steps:
- la test LSB for multiplier (0 or 1)
 - If I then P = P + MC
 - If 0 then no operation
- 2 shift MC left
- 3 shift MP right
- All bits done?
 - If still <max bit, repeat
 - If = max bit, stop



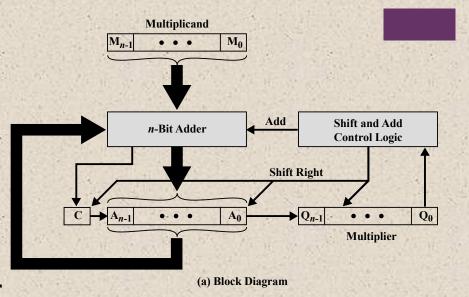
30

	2 x 3 (0010 x 0011)			
Iteration	Step	Multiplier (MP)	Multiplicand (MC)	Product (P)
0	Initial value	001	0000 0010	0000 0000
	$la:l \rightarrow P = P + MC$			0000 0010
1	2: Shift MC left		0000 0100	
	3: Shift MP right	0001		
	$1a:1 \rightarrow P = P + MC$			0000 0110
2	2: Shift MC left		0000 1000	
	3: Shift MP right	0000		
	la:0→no operation			
3	2: Shift MC left		0001 0000	
	3: Shift MP right	0000		
	la:0→no operation			
4	2: Shift MC left		0010 0000	
	3: Shift MP right	0000		

Exercise: Try with 5 x 4

Multiply Hardware - Version 2

1-bit carry register32-bit Product register32-bit Multiplier register32-bit Multiplicand register



С	А	Q	М		
0	0000	1101	1011	Initial Value	S
0	1011	1101	1011	Add \ First	t
0	0101	1110	1011	Shift S Cycle	0
0	0010	1111	1011	Shift } Second Cycle	
0	1101	1111	1011	Add } Third	
0	0110	1111	1011	Shift S Cycle	()
1	0001	1111	1011	Add] Fourt	th
0	1000	1111	1011	Shift S Cycle	9

(b) Example from Figure 9.7 (product in A, Q)

Figure 10.8 Hardware Implementation of Unsigned Binary Multiplication

Multiplication Version 2

```
C A Q MC; C = carry
1. 0 0000 0011 0010
2. 0 0010 0011 0010; A = A+M
3. 0 0001 0001 0010; SR
4. 0 0011 0001 0010; A = A+M
5. 0 0001 1000 0010; SR
6. 0 0000 1100 0010; SR
7. 0 0000 0110 0010; SR
```

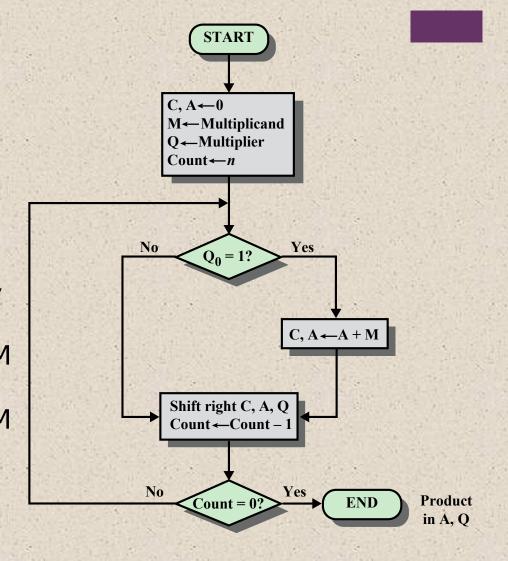
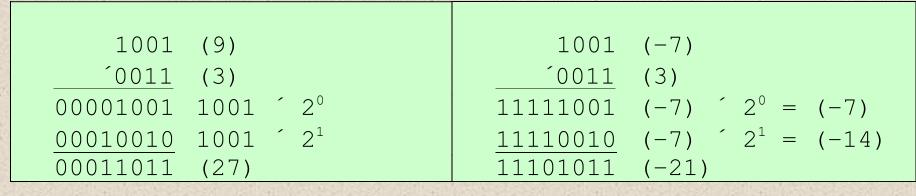


Figure 10.9 Flowchart for Unsigned Binary Multiplication

1011						
00001011	1011	1	1	1	20	
0000000	1011	1	0	1	21	
00101100	1011	1	1	1	22	
01011000	1011	,	1	,	23	
10001111						

Figure 10.10 Multiplication of Two Unsigned 4-Bit Integers Yielding an 8-Bit Result



(a) Unsigned integers

(b) Twos complement integers

Figure 10.11 Comparison of Multiplication of Unsigned and Twos Complement Integers

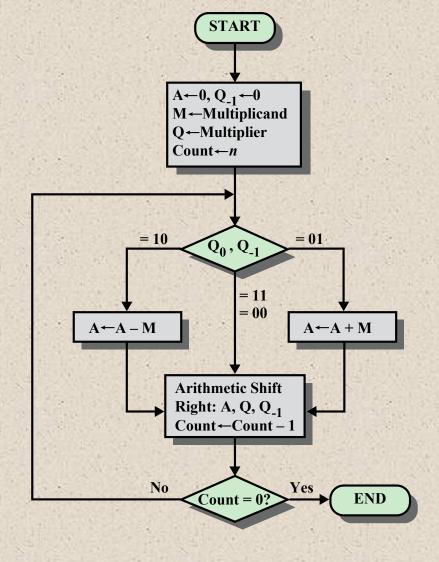


Figure 10.12 Booth's Algorithm for Twos Complement Multiplication

		STEEL ST			
	A	Q	Q_{-1}	M	
	0000	0011	0	0111	Initial Values
	1001	0011	0	0111	$A \leftarrow A - M $ First
	1100	1001	1	0111	Shift S Cycle
W	1110	0100	1	0111	Shift Second Cycle
	0101	0100	1	0111	$A \leftarrow A + M $ Third
	0010	1010	0	0111	Shift S Cycle
	0001	0101	0	0111	Shift } Fourth Cycle

Figure 10.13 Example of Booth's Algorithm (7× 3)

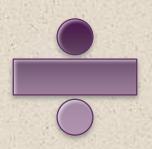
(b) (7) (-3) = (-21)

(d) (-7) (-3) = (21)

Figure 10.14 Examples Using Booth's Algorithm

(a) (7) (3) = (21)

(c) (-7) (3) = (-21)



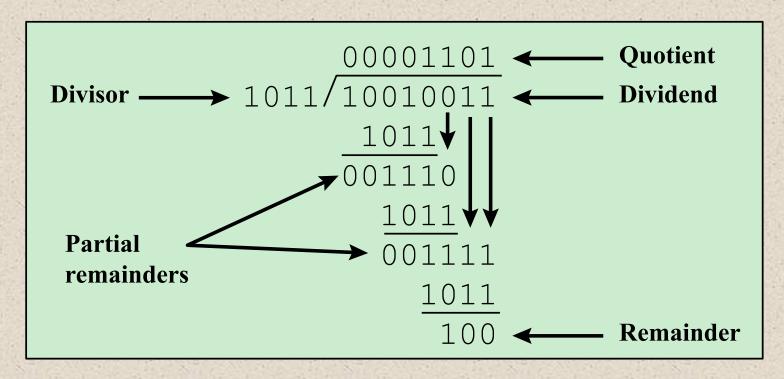
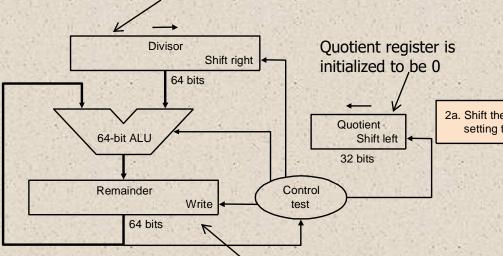


Figure 10.15 Example of Division of Unsigned Binary Integers

1st Version of Division Hardware

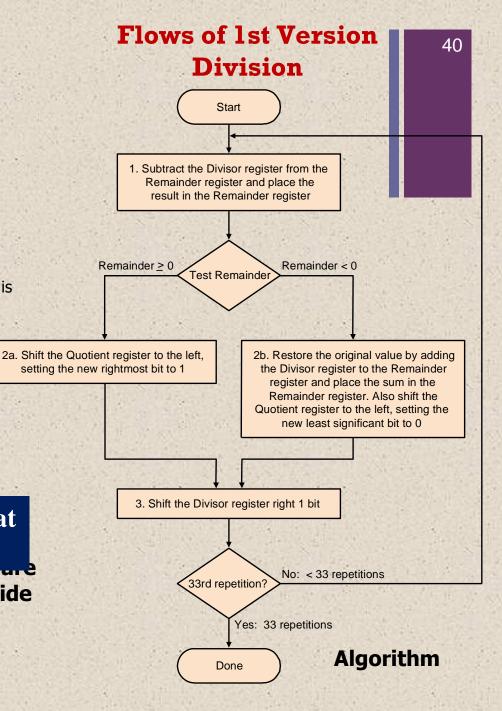
Divisor starts at left half of divisor register

32-bit divisor starts at left half of divisor register



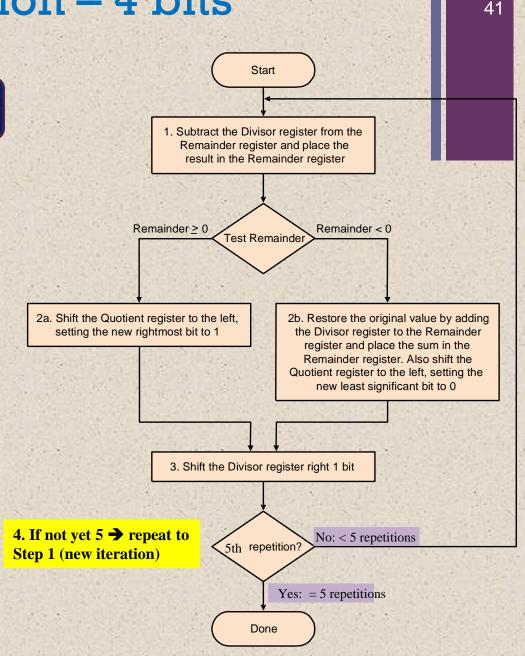
Remainder initialized with dividend at right

64-bit wide; quotient register is 32-bit wide



Steps:

- 1 Remainder(R) = R D
- 2 test new **R** (>=0 or <0)
- 2a If R>=0 then
 - R = no operation;
 - Q = Shift left (add 1 at LSB)
- 2b If R<0 then
 - R = D + R
 - Q = Shift left (add 0 at LSB)
- 3 shift D right
- All bits done?
 - If still <(max bit + 1), repeat
 - If = (max bit+1), stop



Iterati on	Example: 7 ÷ 2 (0111 ÷ 0010)	Step	Quotient (Q)	Divisor (D)	Remainder (R)
0	Initial value		0000	0010 0000	0000 0111
	1.R = R - D				1 110 0111
1	2b. R < 0 ; R =	2b. R < 0 ; R = D + R			0000 0111
1	Q = Shift left (add 0 at LSB)		0000		
	3. D = Shift right			0001 0000	
	1.R = R - D				1 111 0111
2	2b. R < 0 ; R = D + R				0000 0111
4	Q = Shift left	(add 0 at LSB)	0000		
	3.D = Shift r	ight		0000 1000	

Iterati on	Step	Quotient (Q)	Divisor (D)	Remainder (R)
		0000	0000 1000	
	1.R = R - D			1 111 1111
3	2b. $R < 0$; $R = D + R$			0000 0111
S	Q = Shift left (add 0 at LSB)	0000		
(6) ()	3. D = Shift right		0000 0100	
	1.R = R - D			0000 0011
4	2a. $\mathbb{R} \ge 0$; $\mathbb{R} = \text{no operation}$			
4	Q = Shift left (add 1 at LSB)	0001		
	3. D =		0000 0010	
	$1.R = \frac{7/2 = 3 \text{ remainder 1}}{}$			0000 0001 1
5	2a. R			
ð	Q = Shift left (add 1 at LSB)	0011 3		
	3. D = Shift right		0000 0001	

Exercise: Try with 6/4

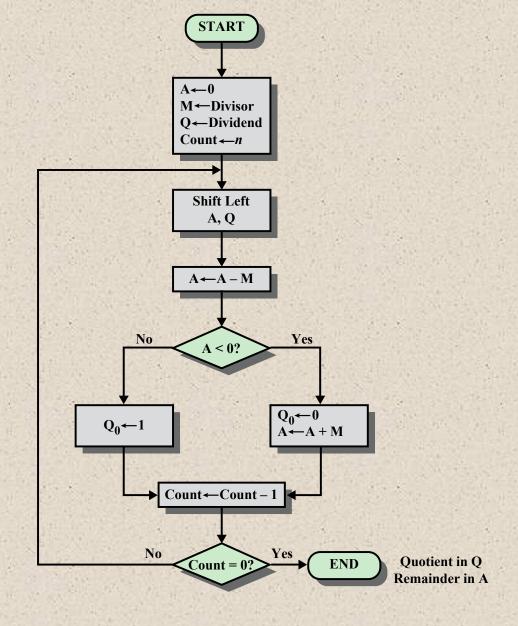


Figure 10.16 Flowchart for Unsigned Binary Division

A	0	
0000	0111	Initial value
0000 1101 1101	1110	Shift Use twos complement of 0011 for subtraction Subtract
0000	1110	Restore, set $Q_0 = 0$
0001	1100	Shift
1110 0001	1100	Subtract Restore, set $Q_0 = 0$
0011 <u>1101</u>	1000	Shift
0000	1001	Subtract, set $Q_0 = 1$
$ \begin{array}{c} 0001 \\ $	0010	Shift Subtract
0001	0010	Restore, set $Q_0 = 0$

Figure 10.17 Example of Restoring Twos Complement Division (7/3)

10.4 Floating-Point Representation

Principles

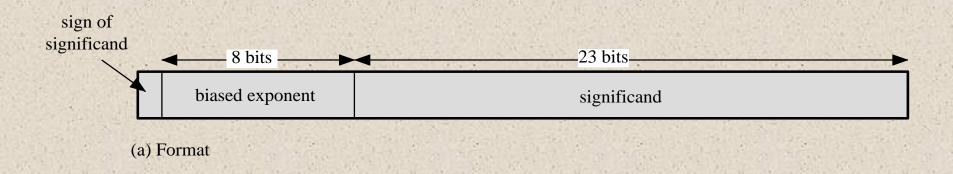
TIEEE Standards for Binary-Floating Point Representation

10.4 Floating-Point Representation Principles

- With a fixed-point notation it is possible to represent a range of positive and negative integers centered on or near 0
- By assuming a fixed binary or radix point, this format allows the representation of numbers with a fractional component as well

■ Limitations:

- Very large numbers cannot be represented nor can very small fractions
- The fractional part of the quotient in a division of two large numbers could be lost



(b) Examples

Figure 10.18 Typical 32-Bit Floating-Point Format

Floating-Point Significand

- The final portion of the word
- Any floating-point number can be expressed in many ways

The following are equivalent, where the significand is expressed in binary form:

0.110 * 2⁵ 110 * 2² 0.0110 * 2⁶ (unnormalized)

- Normal number (normalized)
 - The most significant digit of the significand is nonzero

Normalization Process

- Normalization is the process of deleting the zeroes until a non-zero value is detected.

 0.00234×10^4

 $\rightarrow 0.234 \times 10^{4-2} \rightarrow 0.234 \times 10^2$

C Move radix point to the left (in this case 2 points)

 12.0024×10^4

 $\rightarrow 0.120024 \times 10^{4+2} \rightarrow 0.120 \times 10^{6}$

A rule of thumb:

moving the radix point to the right \rightarrow subtract exponent moving the radix point to the left \rightarrow add exponent

Accurate Arithmetic: Overflow & Underflow

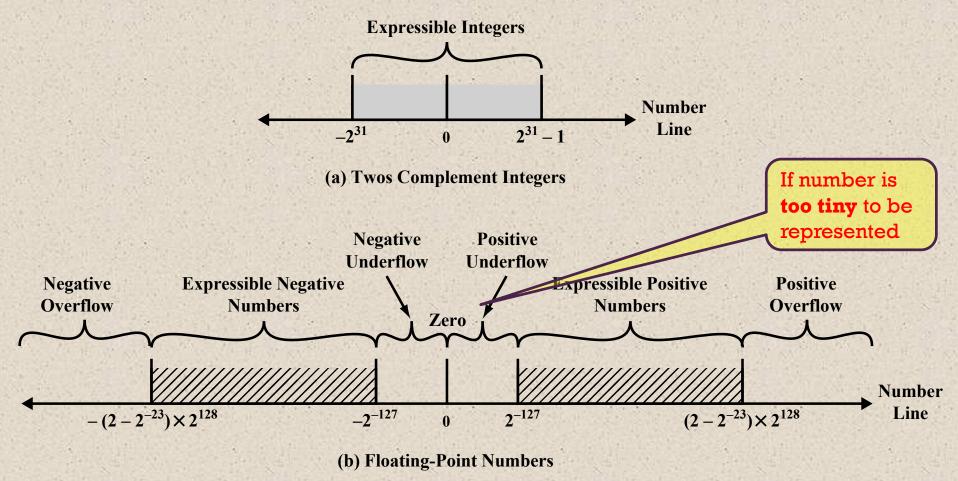


Figure 10.19 Expressible Numbers in Typical 32-Bit Formats

IEEE Standard 754

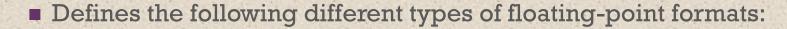
Most important floating-point representation is defined

Standard was developed to facilitate the portability of programs from one processor to another and to encourage the development of sophisticated, numerically oriented programs

Standard has been widely adopted and is used on virtually all contemporary processors and arithmetic coprocessors

IEEE 754-2008 covers both binary and decimal floating-point representations

IEEE 754-2008



Arithmetic format

All the mandatory operations defined by the standard are supported by the format. The format may be used to represent floating-point operands or results for the operations described in the standard.

■ Basic format

■ This format covers five floating-point representations, three binary and two decimal, whose encodings are specified by the standard, and which can be used for arithmetic. At least one of the basic formats is implemented in any conforming implementation.

■ Interchange format

A fully specified, fixed-length binary encoding that allows data interchange between different platforms and that can be used for storage.

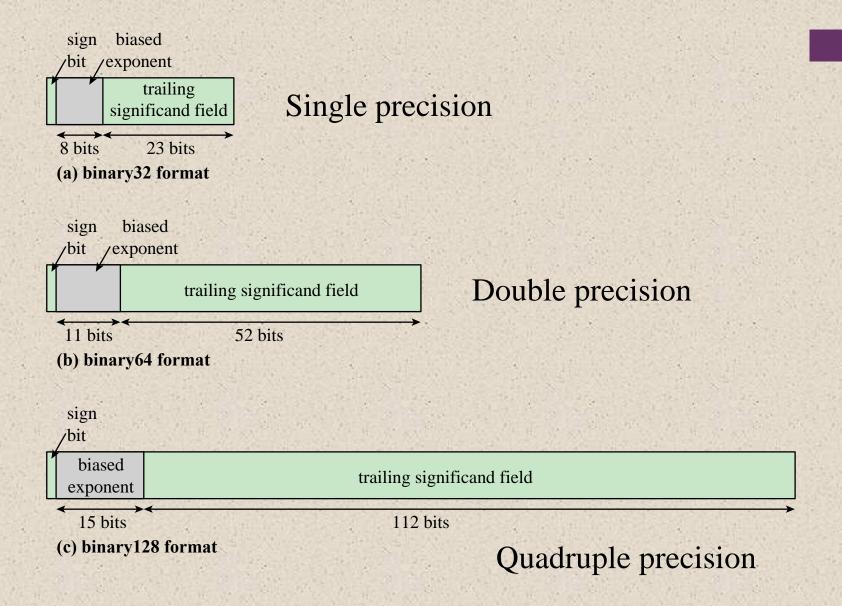


Figure 10.21 IEEE 754 Formats

Table 10.3 IEEE 754 Format Parameters

Parameter	Format			
T at affecter	binary32	binary64	binary128	
Storage width (bits)	32	64	128	
Exponent width (bits)	8	11	15	
Exponent bias	127	1023	16383	
Maximum exponent	127	1023	16383	
Minimum exponent	-126	-1022	-16382	
Approx normal number range (base 10)	10_38, 10_438	10_308, 10+308	$10_{-4932}, 10_{+4932}$	
Trailing significand width (bits)*	23	52	112	
Number of exponents	254	2046	32766	
Number of fractions	2 ₂₃	2 ₅₂	2 ₁₁₂	
Number of values	1.98 ´ 2 ₃₁	1.99 ´ 2 ₆₃	1.99 ´ 2 ₁₂₈	
Smallest positive normal number	2_126	2_1022	2_16362	
Largest positive normal number	$2_{128} - 2_{104}$	$2_{1024} - 2_{971}$	$2_{16384} - 2_{16271}$	
Smallest subnormal magnitude	2_149	2_1074	2_16494	

^{*} not including implied bit and not including sign bit

+ Additional Formats

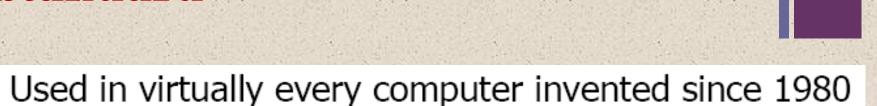
Extended Precision Formats

- Provide additional bits in the exponent (extended range) and in the significand (extended precision)
- Lessens the chance of a final result that has been contaminated by excessive roundoff error
- Lessens the chance of an intermediate overflow aborting a computation whose final result would have been representable in a basic format
- Affords some of the benefits of a larger basic format without incurring the time penalty usually associated with higher precision

Extendable Precision Format

- Precision and range are defined under user control
- May be used for intermediate calculations but the standard places no constraint or format or length

IEEE 754 Floating-Point Standard



- To pack more bits into the significand, the leading 1 bit of normalized binary number is made implicit
 - Original: 1.xxxxxxxxxx_{two} × 2^{yyyy} → (-1)^S × F × 2^E
 - Modified: (-1)^S × (1+Fraction) × 2^E
 - Significand: 1 plus the fraction
 - Single precision: 24 bits
 - Double precision: 53 bits

The 1 in (1 + Fraction) is made implicit \rightarrow to pack more bits into the significand

Normalized Scientific Notation in IEEE 754

In IEEE standard for normalization (used in computers), a floating point number is said to be normalized if there is only a single non-zero before the radix point.

(there is only a single non-

■ Example:

123.456

→ normalized

 1.23456×10^2

1010.1011_B

→ normalized

 $1.01010111 \times 2^{011}$

before the

radix

Biased Notation in IEEE 754

- The desired notation must represent the most negative exponent as 00...00_{two} and the most positive as 11...11_{two}
 - IEEE 754 uses a bias of 127 for single precision (and 1023 for double precision)

$$-1$$
 → $-1+127_{ten} = 0111 1110_{two}$

• $+1 \rightarrow 1+127_{ten} = 1000 \ 0000_{two}$

Bias

- → In single precision is 127
- → In double precision 1023

- A fixed value, called the bias, is subtracted from the field to get the true exponent value.
- An advantage of biased representation is that nonnegative floating-point numbers can be treated as integers for comparison purposes.

SINGLE-PRECISION RANGE

- Exponents 00000000 and 11111111 are reserved
- Smallest value
 - Exponent: 00000001 \Rightarrow actual exponent = 1 - 127 = -126
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: $111111110 = 254_{10}$ \Rightarrow actual exponent = 254 - 127 = +127
 - Fraction: $111...11 \Rightarrow \text{significand} \approx 2.0$
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

+DOUBLE-PRECISION RANGE

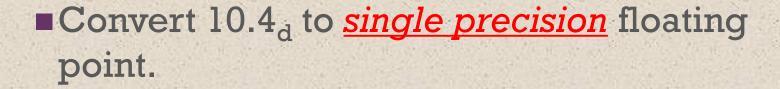
- Exponents 0000...00 and 1111...11 are reserved
- Smallest value
 - Exponent: 00000000001 \Rightarrow actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value

 - Fraction: $111...11 \Rightarrow \text{significand} \approx 2.0$
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

IEEE 754 Conversion

- ■To convert a decimal number to single (or double) precision floating point:
 - Step 1: Normalize
 - Step 2: Determine Sign Bit
 - Step 3: Determine exponent
 - Step 4: Determine Significand

IEEE 754 Conversion: Example 1



■Step 1: Normalize

10 > 00001010

$$0.4 \times 2 = 0.8 \Rightarrow 0$$

 $0.8 \times 2 = 1.6 \Rightarrow 1$
 $0.6 \times 2 = 1.2 \Rightarrow 1$
 $0.2 \times 2 = 0.4 \Rightarrow 0$

$$0.8 \times 2 = 1.6 \implies 1$$

 $0.4 \times 2 = 0.8 \rightarrow 0$

For continuous results, take the 1st pattern before it repeats itself

$$0.4 = .0110$$

 $10.4 = 1010.0110 \times 2^{0}$

 \rightarrow 1.0100110 x 2³

IEEE 754 Conversion: Example 1

- ■Step 2: Determine Sign Bit (S)
 - ■Because (10.4) is positive, S = 0

- ■Step 3: Determine exponent
 - ■Because its single precision → bias = 127
 - Exponent = 3 + bias= 3 + 127= 130_{d} = $1000 \ 0010_{b}$

IEEE 754 Conversion: Example 1

- Step4: Determine Significand
 - Drop the leading 1 of the significand

1.0100110 x 2^3 \rightarrow 0100110

• Then expand (padding) to 23 bits

010011000000000000000000

sign	Exponent	Significand
0	10000010	01001100000000000000000

Exponent = $\frac{1000\ 0010_{h}}{}$

IEEE 754 Conversion: EXERCISE

- ■Convert -0.75_d to:
 - single precision floating point.
 - double precision floating point.

Converting Binary to Decimal Floating-Point

Remember: Biased notation \rightarrow (-1)sign x (1 + Fraction) x 2 (exponent-bias)

What decimal number is represented by this single precision flow

Sign (1 bit)	Exponent(8	Significand(23 bit)
1	10000001	01000000000000000000000

Extract the values:

Sign = 1
Exponent =
$$10000001b = 129d$$

Significand
=
$$(0 \times 2^{-1}) + (1 \times 2^{-2}) + (0 \times 2^{-3})$$

= $\frac{1}{4} = 0.25$

The Fraction = -(1 + 0.25)

The number

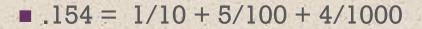
$$=$$
 - $(1.25 \times 2^{\text{(exponent-bias)}})$

$$= - (1.25 \times 2^{(129-127)})$$

$$= - (1.25 \times 2^2)$$

$$= - (1.25 \times 4) = -5.0$$

Math basic ... fraction number!



$$1.\frac{1}{10^1} + 5.\frac{1}{10^2} + 4.\frac{1}{10^3}$$

 \blacksquare .1011 = 1/2 + 0/4 + 1/8 + 1/16

$$1.\frac{1}{2^1} + 0.\frac{1}{2^2} + 1.\frac{1}{2^3} + 1.\frac{1}{2^4}$$

Decimal = base 10

Binary = base 2

Table 10.4 IEEE Formats

Format	Format Type					
Tormat	Arithmetic Format	Basic Format	Interchange Format			
binary16			X			
binary32	X	X	X			
binary64	X	X	X			
binary128	X	X	X			
binary $\{k\}$ $(k = n \cdot 32 \text{ for } n > 4)$	×		×			
decimal64	X	X	X			
decimal128	X	X	X			
$ \frac{\text{decimal}\{k\}}{(k = n \cdot 32 \text{ for } n > 4)} $	X		X			
extended precision	X					
extendable precision	X					

Table 10.5
Interpretation of IEEE 754 Floating-Point Numbers (page 1 of 3)

	Sign	Biased exponent	Fraction	Value
positive zero	0	0	0	0
negative zero	1	0	0	-0
plus infinity	0	all 1s	0	∞
Minus infinity	1	all 1s	0	$-\infty$
quiet NaN	0 or 1	all 1s	≠ 0; first bit = 1	qNaN
signaling NaN	0 or 1	all 1s	\neq 0; first bit = 0	sNaN
positive normal nonzero	0	0 < e < 255	f	$2_{e-127}(1.f)$
negative normal nonzero	1	0 < e < 255	f	$-2_{e-127}(1.f)$
positive subnormal	0	0	$f \neq 0$	$2_{e-126}(0.f)$
negative subnormal	1	0	$f \neq 0$	$-2_{e-126}(0.f)$

(a) binary32 format

Table 10.5
Interpretation of IEEE 754 Floating-Point Numbers (page 2 of 3)

	Sign	Biased exponent	Fraction	Value
positive zero	0	0	0	0
negative zero	1	0	0	-0
plus infinity	0	all 1s	0	∞
Minus infinity	1	all 1s	0	$-\infty$
quiet NaN	0 or 1	all 1s	\neq 0; first bit = 1	qNaN
signaling NaN	0 or 1	all 1s	\neq 0; first bit = 0	sNaN
positive normal nonzero	0	0 < e < 2047	f	$2_{e-1023}(1.f)$
negative normal nonzero	1	0 < e < 2047	f	$-2_{e-1023}(1.f)$
positive subnormal	0	0	$f \neq 0$	$2_{e-1022}(0.f)$
negative subnormal	1	0	$f \neq 0$	$-2_{e-1022}(0.f)$

(a) binary64 format

Table 10.5
Interpretation of IEEE 754 Floating-Point Numbers (page 3 of 3)

	G •	n. I	D	X 7 1
	Sign	Biased exponent	Fraction	Value
positive zero	0	0	0	0
negative zero	1	0	0	-0
plus infinity	0	all 1s	0	8
minus infinity	1	all 1s	0	
quiet NaN	0 or 1	all 1s	\neq 0; first bit = 1	qNaN
signaling NaN	0 or 1	all 1s	\neq 0; first bit = 0	sNaN
positive normal nonzero	0	all 1s	f	$2_{e-16383}(1.f)$
negative normal nonzero	1	all 1s	f	$-2_{e-16383}(1.f)$
positive subnormal	0	0	$f \neq 0$	$2_{e-16383}(0.f)$
negative subnormal	1	0	$f \neq 0$	$-2_{e-16383}(0.f)$

(a) binary 128 format

10.5 Floating-Point Arithmetic

Addition and Subtraction

Hultiplication and Division

Precision Considerations

IEEE Standard for Binary FloatingPoint Arithmetic

Table 10.6 Floating-Point Numbers and Arithmetic Operations

Floating Point Numbers	Arithmetic Operations
$X = X_S \cdot B^{X_E}$	$X + Y = \begin{pmatrix} X_s & B^{X_E - Y_E} + Y_s \end{pmatrix} & B^{Y_E} \ddot{\downarrow}$ $X - Y = \begin{pmatrix} X_s & B^{X_E - Y_E} - Y_s \end{pmatrix} & B^{Y_E} \dot{\downarrow} & X_E \in Y_E$
$Y = Y_S \cdot B^{Y_E}$	$X - Y = \left(X_{s} \cdot B^{X_{E} - Y_{E}} - Y_{s}\right) \cdot B^{Y_{E}} \downarrow^{X_{E} - Y_{E}}$
	$X \cdot Y = (X_S \cdot Y_S) \cdot B^{X_E + Y_E}$
	$\frac{X}{Y} = \begin{cases} \frac{\mathcal{X}_S \ddot{0}}{Y_S \dot{\tilde{\emptyset}}} & B^{X_E - Y_E} \end{cases}$

Examples:

$$X = 0.3 \cdot 10^2 = 30$$

 $Y = 0.2 \cdot 10^3 = 200$

$$\begin{array}{c} X + Y = (0.3 \ \ ^{\prime} 10_{2-3} + 0.2) \ \ ^{\prime} 10_{3} = 0.23 \ \ ^{\prime} 10_{3} = 230 \\ X - Y = (0.3 \ \ ^{\prime} 10_{2-3} - 0.2) \ \ ^{\prime} 10_{3} = (-0.17) \ \ ^{\prime} 10_{3} = -170 \\ X \ \ ^{\prime} Y = (0.3 \ \ ^{\prime} 0.2) \ \ ^{\prime} 10_{2+3} = 0.06 \ \ ^{\prime} 10_{5} = 6000 \\ X \ \ ^{\prime} Y = (0.3 \ \ ^{\prime} 0.2) \ \ ^{\prime} 10_{2-3} = 1.5 \ \ ^{\prime} 10_{-1} = 0.15 \\ \end{array}$$

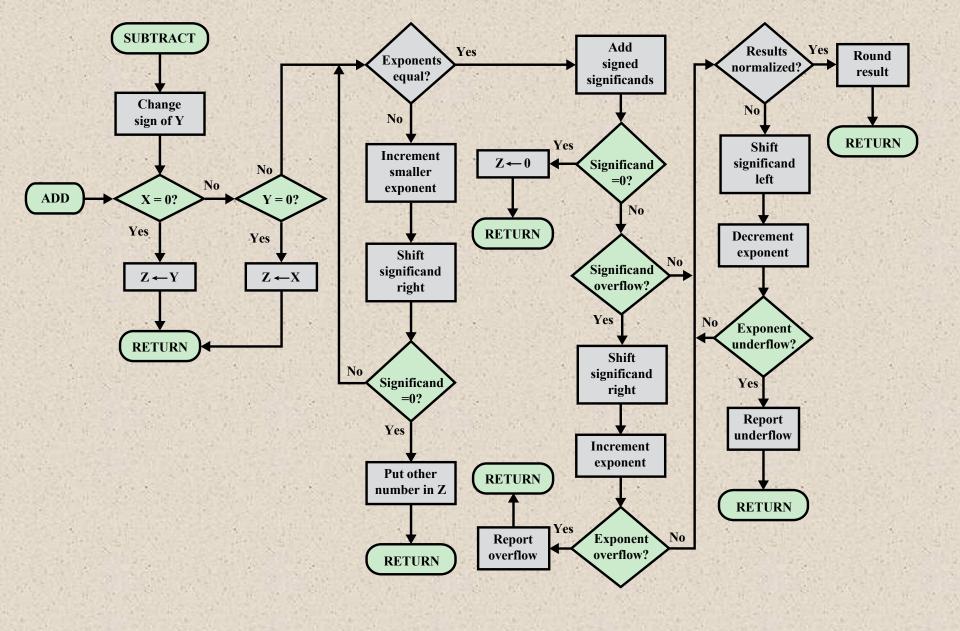
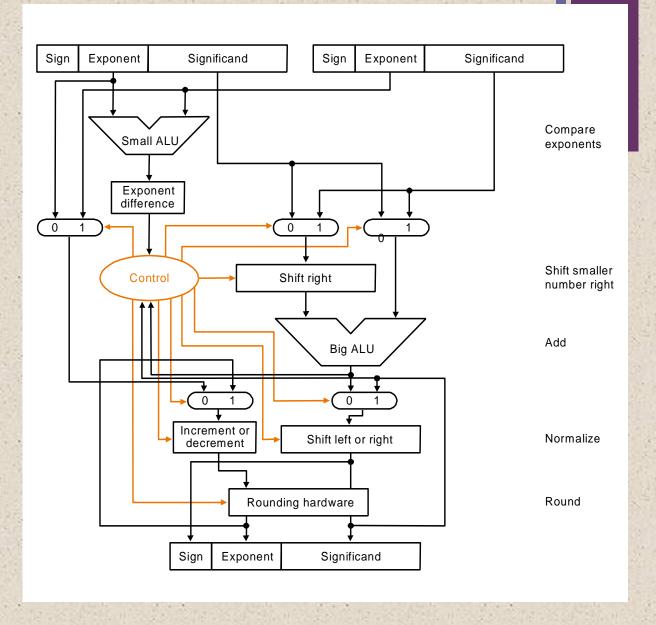


Figure 10.22 Floating-Point Addition and Subtraction ($Z \leftarrow X \pm Y$)

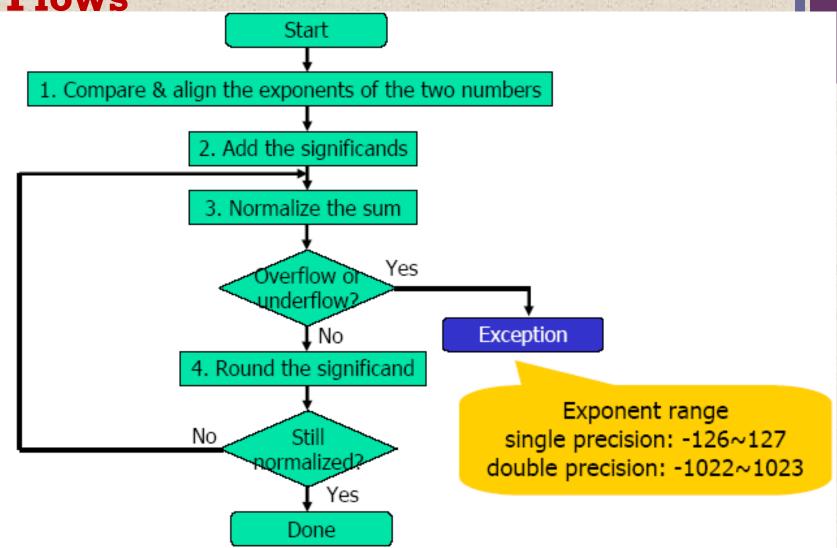
Block diagram of an arithmetic unit dedicated to floating-point

addition.

Floating-Point ALU



+ Simplified Floating-Point Addition Flows



Decimal Floating-Point Addition

Assume 4 decimal digits for significand and 2 decimal digits for exponent

Step 1: Align the decimal point of the number that has the smaller exponent

Step 2: Add the significand

check for overflow/underflow of the significant

Step 3: Normalize the sum

 check for overflow/underflow of the exponent after normalisation

Step 4: Round the significand

• If the significand does not fit in the space reserved for it, it has to be rounded off

Step 5: Normalize it (if need be)

⁺ A) Decimal Floating-Point Addition

Example: $9.999_d \times 10^1 + 1.610_d \times 10^{-1}$

Step 1: Align the decimal point of the number that has the smaller exponent

Make
$$1.610_d \times 10^{-1}$$
 to 10^1
 $\rightarrow -1 + x = 1 \rightarrow x = 2 \rightarrow \text{move 2 to left}$
 $\rightarrow 0.0161_d \times 10^1$

· Step 2: add the significand

A) <u>Decimal</u> Floating-Point Addition

Example: $9.999_d \times 10^1 + 1.610_d \times 10^{-1}$

• Step 3: Normalize the sum

 $10.0151 \times 10^{1} \rightarrow 1.00151 \times 10^{2}$

• Step 4: Round the significand (to 4 decimal digits for significand)

 $1.00151 \times 10^2 \rightarrow 1.0015 \times 10^2$

• Step 5: Normalize it (if need be)

No need as its normalized

B) <u>Binary</u> Floating-Point Addition

Example: $0.5_d + (-0.4375_d)$

Convert the numbers to binary

$$0.5 \rightarrow 0.10_{\rm b} \times 2^{0} \rightarrow 1.0_{\rm b} \times 2^{-1}$$

$$-0.4375 \rightarrow -0.0111_b \times 2^0 \rightarrow -1.11_b \times 2^{-2}$$

• Step 1: Align the decimal point of the number that has the smaller exponent

Make
$$1.11_b \times 2^{-2}$$
 to 2^{-1}

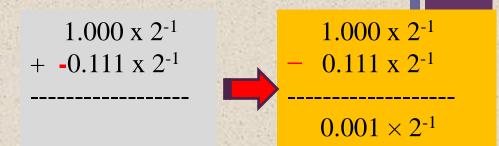
$$\rightarrow$$
 -2 + $x = -1 \rightarrow x = 1 \rightarrow$ move 1 to left

$$\rightarrow$$
 - 0.111_b x 2⁻¹

B) Binary Floating-Point Addition

Example: $0.5_d + (-0.4375_d)$

• Step 2: add the significand



Step 3: Normalize the sum

$$0.001 \times 2^{-1} \rightarrow 1.0000 \times 2^{-4}$$

• Step 4: Round the significand (to 4 decimal digits for significand)

Fits in the 4 decimal digits

Step 5: Normalize it (if need be)

No need as its normalized

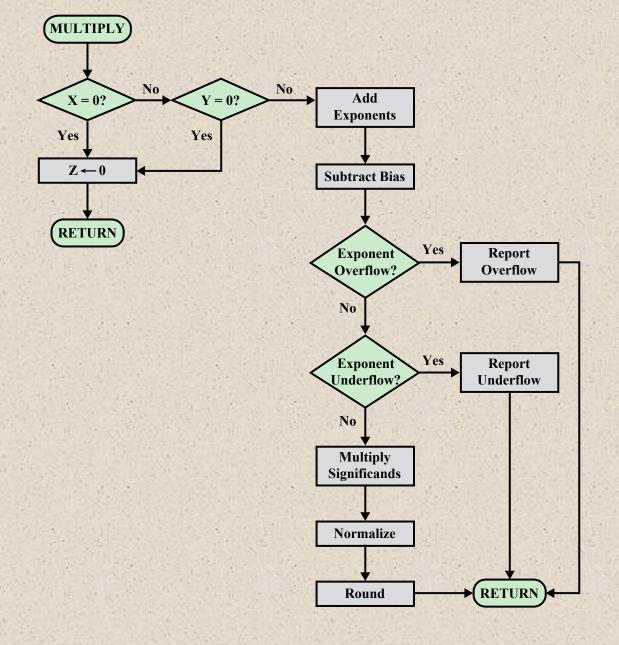


Figure 10.23 Floating-Point Multiplication ($Z \leftarrow X \times Y$)

Floating-Point Multiplication

- Step 1: Add the exponent of the 2 numbers
- Step 2: Subtract bias
 - check for overflow/underflow of the exponent after normalization
- Step 3: Multiply the significands
- Step 4: Normalize the product
- Step 5: Round the significand
 - If the significand does not fit in the space reserved for it, it has to be rounded off
- Step 6: Set the sign of the product

A) Floating-Point Multiplication

(decimal)

Example: $(1.110_d \times 10^{10}) \times (9.200_d \times 10^{-5})$

- Assume 4 decimal digits for significand and 2 decimal digits for exponent
- Step 1: Add the exponent of the 2 numbers

$$10 + (-5) = 5$$

Step 2: Subtract bias

$$10 + (-5) + 127 = 132$$

A) Floating-Point Multiplication

(decimal) Example: $(1.110_d \times 10^{10}) \times (9.200_d \times 10^{-5})$

- Assume 4 decimal digits for significand and 2 decimal digits for exponent
- Step 1: Add the exponent of the 2 numbers

$$10 + (-5) = 5$$

If biased is considered $\rightarrow 10 + (-5) + 127 = 132$

- · Step 2: Subtract bias
- Step 2: Multiply the significands

 $\rightarrow 10.212000 \rightarrow 10.2120 \times 10^5$

+A) Floating-Point Multiplication (decimal) Example: (1.110_d x 10¹⁰) x (9.200_d x 10⁻⁵)

Step 3: Normalize the product

 $10.2120 \times 10^5 \rightarrow 1.02120 \times 10^6$

Step 4: Round the significand (4 decimal digits for significand)

 1.0212×10^6

Step 5: Normalize it (if need be)
 Still normalized

Step 6: Set the sign of the product

 $+1.0212 \times 10^6$

(binary) Example: (1.000_b x 2⁻¹) x (-1.110_b x 2⁻²)

- Assume 4 binary digits for significand and 2 binary digits for exponent
- · Step 1: Add the exponent of the 2 numbers

$$-1 + (-2) = -3$$

If biased is considered \rightarrow -1 + (-2) + 127 = 124

Step 2: Multiply the significands

1.110

x 1.000

1110000

-> 1.110000

→ 1.110000 → 1.110000 x 2^{-3}

B) Floating-Point Multiplication (binar

Example: $(1.000_b \times 2^{-1}) \times (-1.110_b \times 2^{-2})$

- Step 3: Normalize the product
 - 1.110000×2^{-3} already normalized
- · Step 4: Round the significand (4 binary digits for significand)

 1.1100×2^{-3}

Step 5: Normalize it (if need be)

Still normalized

Step 6: Set the sign of the product

 $-1.1100_{\rm b} \times 2^{-3}$ \rightarrow $-7/32_{\rm d}$

Precision Considerations

Rounding

- IEEE standard approaches:
 - Round to nearest:
 - The result is rounded to the nearest representable number.
 - Round toward +∞:
 - The result is rounded up toward plus infinity.
 - Round toward -∞:
 - The result is rounded down toward negative infinity.
 - Round toward 0:
 - The result is rounded toward zero.

Interval Arithmetic

- Provides an efficient method for monitoring and controlling errors in floating-point computations by producing two values for each result
- The two values correspond to the lower and upper endpoints of an interval that contains the true result
- The width of the interval indicates the accuracy of the result
- If the endpoints are not representable then the interval endpoints are rounded down and up respectively
- If the range between the upper and lower bounds is sufficiently narrow then a sufficiently accurate result has been obtained

 Minus infinity and rounding to plus are useful in implementing interval arithmetic

Truncation

- Round toward zero
- Extra bits are ignored
- Simplest technique
- A consistent bias toward zero in the operation
 - Serious bias because it affects every operation for which there are nonzero extra bits

+ Summary

Chapter 10

- ALU
- Integer representation
 - Sign-magnitude representation
 - Twos complement representation
 - Range extension
 - Fixed-point representation
- Floating-point representation
 - Principles
 - IEEE standard for binary floating-point representation

Computer Arithmetic

- Integer arithmetic
 - Negation
 - Addition and subtraction
 - Multiplication
 - Division
- Floating-point arithmetic
 - Addition and subtraction
 - Multiplication and division
 - Precision consideration
 - IEEE standard for binary floating-point arithmetic