
+

William Stallings

Computer Organization

and Architecture

10th Edition

© 2016 Pearson Education, Inc., Hoboken,

NJ. All rights reserved.

MODULE 2

+ Chapter 10

Computer Arithmetic

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Objectives

Understand the fundamentals of numerical data

representation and manipulation in digital

computers.

Master the skill of converting between various radix

systems.

Understand how errors can occur in computations

because of overflow and truncation.

Understand the fundamental concepts of floating-

point representation.

+
10.1Arithmetic & Logic Unit (ALU)

 Part of the computer that actually performs arithmetic and

logical operations on data

 All of the other elements of the computer system are there

mainly to bring data into the ALU for it to process and then to

take the results back out

 Based on the use of simple digital logic devices that can store

binary digits and perform simple Boolean logic operations

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

ALU

Control

Signals

Operand

Registers

Flags

Result

Registers

Figure 10.1 ALU Inputs and Outputs

+

10.2

Integer Representation

Sign-Magnitude Representation

Twos Complement Representation

Range Extension

Fixed-Point Representation

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Numbers: overview

Integer

Unsigned
Numbers

Whole

Division-
Remainder

Successive
Subtraction

Fraction

Multiplication

Signed

Signed-
Magnitude

Complement

One’s
Complement

Two’s
Complement

+
Unsigned Numbers

• For positive number only.

• Range number = 0 to 2n-1

• There is no negative values representation.

If 32 bits long.

Range of numbers that can be represented

= 0 to (232 – 1) = 0 to 4,294,967,295

+
Integer Representation

 In the binary number system arbitrary numbers can be

represented with:

 The digits zero and one

 The minus sign (for negative numbers)

 The period, or radix point (for numbers with a fractional

component)

 For purposes of computer storage and processing we do not

have the benefit of special symbols for the minus sign and

radix point

 Only binary digits (0,1) may be used to represent numbers

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Signed Numbers

• Integers as binary values can be positive or negative.

• Problem:

• How to represent and encode the actual sign of a

number?

• Solution:

• Need code to represent the signs.

• Three signed representations covered:

• Signed Magnitude

• Ones Complement

• Twos Complement

Sign-Magnitude Representation

There are several alternative
conventions used to represent

negative as well as positive
integers

Sign-magnitude representation is
the simplest form that employs a

sign bit

Drawbacks:

Because of these drawbacks,
sign-magnitude representation is
rarely used in implementing the

integer portion of the ALU

•All of these alternatives involve treating the
most significant (leftmost) bit in the word as a
sign bit

•If the sign bit is 0 the number is positive

•If the sign bit is 1 the number is negative

•Addition and subtraction require a
consideration of both the signs of the
numbers and their relative magnitudes to
carry out the required operation

•There are two representations of 0

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 10.1
Characteristics of Twos Complement Representation and Arithmetic

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Range –2n–1 through 2n–1 – 1

Number of Representations
of Zero

One

Negation
Take the Boolean complement of each bit of the corresponding

positive number, then add 1 to the resulting bit pattern viewed as

an unsigned integer.

Expansion of Bit Length
Add additional bit positions to the left and fill in with the value

of the original sign bit.

Overflow Rule
If two numbers with the same sign (both positive or both

negative) are added, then overflow occurs if and only if the result

has the opposite sign.

Subtraction Rule
To subtract B from A, take the twos complement of B and add it

to A.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Decimal

Representation

Sign-Magnitude

Representation

Twos Complement

Representation

Biased

Representation

+8 — — 1111

+7 0111 0111 1110

+6 0110 0110 1101

+5 0101 0101 1100

+4 0100 0100 1011

+3 0011 0011 1010

+2 0010 0010 1001

+1 0001 0001 1000

+0 0000 0000 0111

–0 1000 — —

–1 1001 1111 0110

–2 1010 1110 0101

–3 1011 1101 0100

–4 1100 1100 0011

–5 1101 1011 0010

–6 1110 1010 0001

–7 1111 1001 0000

–8 — 1000 —

Table 10.2
Alternative Representations for 4-Bit Integers

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

–128 64 32 16 8 4 2 1

(a) An eight-position two's complement value box

–128 64 32 16 8 4 2 1

1 0 0 0 0 0 1 1

–128 +2 +1 = –125

(b) Convert binary 10000011 to decimal

 –128 64 32 16 8 4 2 1

 1 0 0 0 1 0 0 0

–120 = –128 +8

(c) Convert decimal –120 to binary

Figure 10.2 Use of a Value Box for Conversion

Between Twos Complement Binary and Decimal

+
Range Extension

 Range of numbers that can be expressed is extended by

increasing the bit length

 In sign-magnitude notation this is accomplished by moving the sign

bit to the new leftmost position and fill in with zeros

 This procedure will not work for twos complement negative integers

 Rule is to move the sign bit to the new leftmost position and fill in with

copies of the sign bit

 For positive numbers, fill in with zeros, and for negative numbers, fill in

with ones

 This is called

sign extension

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

00000010 00000000 00000010

11111110 11111111 11111110

Sign bit Sign bitSign bit

extended

Fixed-Point Representation

The radix point (binary
point) is fixed and assumed

to be to the right of the
rightmost digit

Programmer can use the
same representation for

binary fractions by scaling
the numbers so that the
binary point is implicitly
positioned at some other

location

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+

10.3

Integer Arithmetic

Negation

Addition and Subtraction

Multiplication

Division

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Negation

 Twos complement operation

 Take the Boolean complement of each bit of the integer (including the

sign bit)

 Treating the result as an unsigned binary integer, add 1

(twos complement)

 The negative of the negative of that number is itself:

+18 = 00010010

bitwise complement = 11101101

+ 1

11101110 = -18

-18 = 11101110

bitwise complement = 00010001

+ 1

00010010 = +18 (twos complement)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Negation Special Case 1 (0)

0 = 00000000

Bitwise complement = 11111111

Add 1 to LSB + 1

Result 100000000 (twos complement)

Overflow is ignored, so:

- 0 = 0

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Negation Special Case 2 (-128)

+128 = 10000000

Bitwise complement = 01111111

Add 1 to LSB + 1

Result 10000000 (twos complement)

So:

-(-128) = -128 X

Monitor MSB (sign bit)

It should change during negation

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 1001 = –7

 +0101 = 5

 1110 = –2

 1100 = –4

 +0100 = 4

 10000 = 0

(a) (–7) + (+5) (b) (–4) + (+4)

 0011 = 3

 +0100 = 4

 0111 = 7

 1100 = –4

 +1111 = –1

 11011 = –5

(c) (+3) + (+4) (d) (–4) + (–1)

 0101 = 5

 +0100 = 4

 1001 = Overflow

 1001 = –7

 +1010 = –6

 10011 = Overflow

(e) (+5) + (+4) (f) (–7) + (–6)

Figure 10.3 Addition of Numbers in Twos Complement Representation

+

OVERFLOW RULE:

If two numbers are added,

and they are both positive or

both negative, then overflow

occurs if and only if the result

has the opposite sign.

Overflow

Rule

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Overflow in Humankind History

+

SUBTRACTION RULE:

To subtract one number

(subtrahend) from

another (minuend), take

the twos complement

(negation) of the

subtrahend and add it

to the minuend.

Subtraction

Rule

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 0010 = 2

 +1001 = –7

 1011 = –5

 0101 = 5

 +1110 = –2

 10011 = 3

(a) M = 2 = 0010

 S = 7 = 0111

 –S = 1001

(b) M = 5 = 0101

 S = 2 = 0010

 –S = 1110

 1011 = –5

 +1110 = –2

 11001 = –7

 0101 = 5

 +0010 = 2

 0111 = 7

(c) M =–5 = 1011

 S = 2 = 0010

 –S = 1110

(d) M = 5 = 0101

 S =–2 = 1110

 –S = 0010

 0111 = 7

 +0111 = 7

 1110 = Overflow

 1010 = –6

 +1100 = –4

 10110 = Overflow

(e) M = 7 = 0111

 S = –7 = 1001

 –S = 0111

(f) M = –6 = 1010

 S = 4 = 0100

 –S = 1100

Figure 10.4 Subtraction of Numbers in Twos Complement Representation (M – S)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

AdderOF

OF = overflow bit

SW = Switch (select addition or subtraction)

Complementer

Figure 10.6 Block Diagram of Hardware for Addition and Subtraction

A RegisterB Register

SW

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 10.7 Multiplication of Unsigned Binary Integers

 1011

 1101

 1011

 0000

 1011

 1011

10001111

Multiplicand (11)

Multiplier (13)

Product (143)

Partial products

 Paper and pencil example (unsigned):

 3 versions of multiply hardware & algorithm:
•successive refinement

+

Refer to:

Chapter 3 , page 184

28

Hardware implementation:

multiplication & division

+ 1st Version of

Multiplication

Hardware

Flows of 1st Version

Multiplication

64-bit ALU

Control test

Multiplier

Shift right

Product

Write

Multiplicand

Shift left

64 bits

64 bits

32 bits

Done

1. Test

Multiplier0

1a. Add multiplicand to product and

place the result in Product register

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No: < 32 repetitions

Yes: 32 repetitions

Multiplicand register, product register, ALU are

64-bit wide; multiplier register is 32-bit wide

Algorithm

32-bit multiplicand starts at right half of multiplicand register

Product register is initialized at 0

29

+
Example of Multiplication – 4 bits

30

 Example : 2 x 3 = ?

 2 x 3  0010 x 0011

 Steps:

 1a – test LSB for multiplier (0 or 1)

 If 1 then P = P + MC

 If 0 then no operation

 2 – shift MC left

 3 – shift MP right

 All bits done?

 If still <max bit, repeat

 If = max bit, stop

Multiplier

(MP)

Multiplicand

(MC)

Product

(P)

Done

1. Test

Multiplier0

1a. Add multiplicand to product and

place the result in Product register

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No: < 32 repetitions

Yes: 32 repetitions

No: < 4 repetitions

Yes: 4 repetitions

4th

repetition

?

31
Iteration Step

Multiplier

(MP)

Multiplicand

(MC)
Product (P)

0 Initial value 0011 0000 0010 0000 0000

1

1a:1P = P + MC

2: Shift MC left

3: Shift MP right

2

1a:1P = P + MC

2: Shift MC left

3: Shift MP right

3

1a:0no operation

2: Shift MC left

3: Shift MP right

4

1a:0no operation

2: Shift MC left

3: Shift MP right

0000 0010

0000 0100

0001

0000 0110

0000 1000

0000

0001 0000

0000

0010 0000

0000

Exercise: Try with 5 x 4

2 x 3 (0010 x 0011)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Mn-1

Multiplicand

(a) Block Diagram

(b) Example from Figure 9.7 (product in A, Q)

Figure 10.8 Hardware Implementation of

Unsigned Binary Multiplication

Add

Shift Right

Multiplier

n-Bit Adder
Shift and Add

Control Logic

M0

An-1C A0 Qn-1 Q0

C

0

0

0

0

0

0

1

0

A

0000

1011

0101

0010

1101

0110

0001

1000

Q

1101

1101

1110

1111

1111

1111

1111

1111

M

1011

1011

1011

1011

1011

1011

1011

1011

Initial Values

Add

Shift

Shift

Add

Shift

Add

Shift

First

Cycle

Second

Cycle

Third

Cycle

Fourth

Cycle

1-bit carry register
32-bit Product register
32-bit Multiplier register
32-bit Multiplicand register

Multiply Hardware - Version 2

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

START

END
YesNo

No Yes

C, A 0

M Multiplicand

Q Multiplier

Count n

Shift right C, A, Q

Count Count – 1

C, A A + M

Q0 = 1?

Count = 0? Product

in A, Q

Figure 10.9 Flowchart for Unsigned Binary Multiplication

Multiplication

Version 2

C A Q MC ;C = carry

1. 0 0000 0011 0010
2. 0 0010 0011 0010 ;A = A+M
3. 0 0001 0001 0010 ;SR
4. 0 0011 0001 0010 ;A = A+M
5. 0 0001 1000 0010 ;SR
6. 0 0000 1100 0010 ;SR
7. 0 0000 0110 0010 ;SR

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 1011

 ´1101

 00001011 1011 ´ 1 ´ 20

 00000000 1011 ´ 0 ´ 21

 00101100 1011 ´ 1 ´ 22

 01011000 1011 ´ 1 ´ 23

 10001111

Figure 10.10 Multiplication of Two Unsigned 4-Bit Integers Yielding an 8-Bit

Result

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 1001 (9)

 ´0011 (3)

00001001 1001 ´ 20

00010010 1001 ´ 21

00011011 (27)

 1001 (–7)

 ´0011 (3)

11111001 (–7) ´ 20
 = (–7)

11110010 (–7) ´ 21
 = (–14)

11101011 (–21)

(a) Unsigned integers (b) Twos complement integers

Figure 10.11 Comparison of Multiplication of Unsigned and Twos

Complement Integers

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

START

END
YesNo

= 10 = 01

= 11

= 00

A 0, Q-1 0

M Multiplicand

Q Multiplier

Count n

Arithmetic Shift

Right: A, Q, Q-1
Count Count – 1

A A + MA A – M

Q0 , Q-1

Count = 0?

Figure 10.12 Booth's Algorithm for Twos Complement Multiplication

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 10.13 Example of Booth's Algorithm (7 3)

Q-1
0

0

1

1

1

0

0

A

0000

1001

1100

1110

0101

0010

0001

Q

0011

0011

1001

0100

0100

1010

0101

M

0111

0111

0111

0111

0111

0111

0111

Initial Values

A A - M

Shift

Shift

A A + M

Shift

Shift

First

Cycle

Second

Cycle

Third

Cycle

Fourth

Cycle

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 0111

 ´0011 (0)

11111001 1–0

0000000 1–1

000111 0–1

00010101 (21)

 0111

 ´1101 (0)

11111001 1–0

0000111 0–1

111001 1–0

11101011 (–21)

(a) (7) ´ (3) = (21) (b) (7) ´ (–3) = (–21)

 1001

 ´0011 (0)

00000111 1–0

0000000 1–1

111001 0–1

11101011 (–21)

 1001

 ´1101 (0)

00000111 1–0

1111001 0–1

000111 1–0

00010101 (21)

(c) (–7) ´ (3) = (–21) (d) (–7) ´ (–3) = (21)

Figure 10.14 Examples Using Booth's Algorithm

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 10.15 Example of Division of Unsigned Binary Integers

 00001101

1011 10010011

 1011

 001110

 1011

 001111

 1011

 100

Quotient

DividendDivisor

Remainder

Partial

remainders

+ 1st Version of

Division

Hardware

40

64-bit ALU

Control

test

Quotient

Shift left

Remainder

Write

Divisor

Shift right

64 bits

64 bits

32 bits

Divisor register, remainder register, ALU are
64-bit wide; quotient register is 32-bit wide

32-bit divisor starts at left half of divisor register

Remainder register is initialized with the dividend at right

Quotient register is
initialized to be 0

Done

Test Remainder

2a. Shift the Quotient register to the left,

setting the new rightmost bit to 1

3. Shift the Divisor register right 1 bit

33rd repetition?

Start

Remainder < 0

No: < 33 repetitions

Yes: 33 repetitions

2b. Restore the original value by adding

the Divisor register to the Remainder

register and place the sum in the

Remainder register. Also shift the

Quotient register to the left, setting the

new least significant bit to 0

1. Subtract the Divisor register from the

Remainder register and place the

 result in the Remainder register

Remainder > 0

–

Algorithm

Flows of 1st Version

Division

Divisor starts at left

half of divisor register

Remainder initialized with dividend at

right

+

Done

Test Remainder

2a. Shift the Quotient register to the left,

setting the new rightmost bit to 1

3. Shift the Divisor register right 1 bit

33rd repetition?

Start

Remainder < 0

No: < 33 repetitions

Yes: 33 repetitions

2b. Restore the original value by adding

the Divisor register to the Remainder

register and place the sum in the

Remainder register. Also shift the

Quotient register to the left, setting the

new least significant bit to 0

1. Subtract the Divisor register from the

Remainder register and place the

 result in the Remainder register

Remainder > 0

–

Example of Division – 4 bits 41

5th
4. If not yet 5  repeat to

Step 1 (new iteration)

 Example : 7 / 2 = ?

 7 / 2  0111 / 0010

Steps:

 1 – Remainder (R) = R – D

 2 – test new R (>=0 or <0)

 2a - If R>=0 then

 R = no operation;

 Q = Shift left (add 1 at LSB)

 2b - If R<0 then

 R = D + R

 Q = Shift left (add 0 at LSB)

 3 – shift D right

 All bits done?

 If still <(max bit + 1), repeat

 If = (max bit+1), stop

Divisor

(D)

Dividend

(DD)

Quotient

(Q)

No: < 5 repetitions

Yes: = 5 repetitions

42
Iterati

on
Step

Quotient

(Q)
Divisor (D)

Remainder (

R)

0 Initial value 0000 0010 0000 0000 0111

1

1. R = R - D

2b. R < 0; R = D + R

Q = Shift left (add 0 at LSB)

3. D = Shift right

2

1. R = R - D

2b. R < 0; R = D + R

Q = Shift left (add 0 at LSB)

3. D = Shift right

Example:

7 ÷ 2

(0111 ÷ 0010)

1110 0111

1111 0111

0000 0111

0000

0001 0000

0000 0111

0000

0000 1000

43Iterati

on
Step

Quotient

(Q)

Divisor

(D)

Remainder

(R)

3

1. R = R – D 1111 1111

2b. R < 0; R = D + R 0000 0111

Q = Shift left (add 0 at LSB) 0000

3. D = Shift right 0000 0100

4

1. R = R - D 0000 0011

2a. R >=0; R = no operation

Q = Shift left (add 1 at LSB) 0001

3. D = Shift right 0000 0010

5

1. R = R - D 0000 0001

2a. R >=0; R = no operation

Q = Shift left (add 1 at LSB) 0011

3. D = Shift right 0000 0001

3

17/2 = 3 remainder 1

0000 0000 1000

Exercise: Try with 6 / 4

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

START

END
YesNo

No Yes

Quotient in Q

Remainder in A

A 0

M Divisor

Q Dividend

Count n

Shift Left

A, Q

A A – M

Count Count – 1

Q0 1
Q0 0

A A + M

A < 0?

Count = 0?

Figure 10.16 Flowchart for Unsigned Binary Division

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

A Q
0000

0111 Initial value

0000

1101

1101

0000

1110

1110

Shift

Use twos complement of 0011 for subtraction

Subtract

Restore, set Q
0
 = 0

0001

1101

1110

0001

1100

1100

Shift

Subtract

Restore, set Q
0
 = 0

0011

1101

0000

1000

1001

Shift

Subtract, set Q
0
 = 1

0001

1101

1110

0001

0010

0010

Shift

Subtract

Restore, set Q
0
 = 0

Figure 10.17 Example of Restoring Twos Complement Division (7/3)

+

10.4

Floating-Point Representation

Principles

IEEE Standards for Binary-Floating
Point Representation

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
10.4 Floating-Point Representation

 With a fixed-point notation it is possible to represent a range

of positive and negative integers centered on or near 0

 By assuming a fixed binary or radix point, this format allows

the representation of numbers with a fractional component as

well

 Limitations:

 Very large numbers cannot be represented nor can very small

fractions

 The fractional part of the quotient in a division of two large

numbers could be lost

Principles

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

8 bits

sign of

significand

significand

23 bits

(a) Format

(b) Examples

Figure 10.18 Typical 32-Bit Floating-Point Format

 1.1010001 210100 = 0 10010011 10100010000000000000000 = 1.6328125 220

-1.1010001 210100 = 1 10010011 10100010000000000000000 = –1.6328125 220

 1.1010001 2-10100 = 0 01101011 10100010000000000000000 = 1.6328125 2–20

-1.1010001 2-10100 = 1 01101011 10100010000000000000000 = –1.6328125 2–20

biased exponent

+
Floating-Point

 The final portion of the word

 Any floating-point number can be expressed in many ways

 Normal number (normalized)

 The most significant digit of the significand is nonzero

Significand

The following are equivalent, where the significand is

expressed in binary form:

0.110 * 25

110 * 22

0.0110 * 26 (unnormalized)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Normalization Process

 Normalization is the process of deleting the zeroes until a non-zero

value is detected.

 Example :

A rule of thumb:

moving the radix point to the right subtract exponent

moving the radix point to the left add exponent

0.00234 x 104  0.234 x 104-2
 0.234 x 102

12.0024 x 104  0.120024 x 104+2
 0.120 x 106

 Move radix point to the left (in this case 2 points)

Move radix point to the right (in this case 2 points)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Expressible Integers

Expressible Negative

Numbers

Negative

Overflow

Positive

Overflow

Negative

Underflow

Zero

Positive

Underflow

Expressible Positive

Numbers

(a) Twos Complement Integers

(b) Floating-Point Numbers

Figure 10.19 Expressible Numbers in Typical 32-Bit Formats

Number

Line

Number

Line

0

0

231 – 1

2–127

–231

–2–127– (2 – 2–23) 2128 (2 – 2–23) 2128

If number is

too tiny to be

represented

Accurate Arithmetic: Overflow & Underflow

IEEE Standard 754

Most important floating-point
representation is defined

Standard was developed to
facilitate the portability of

programs from one
processor to another and to
encourage the development
of sophisticated, numerically

oriented programs

Standard has been widely
adopted and is used on

virtually all contemporary
processors and arithmetic

coprocessors

IEEE 754-2008 covers both
binary and decimal floating-

point representations

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
IEEE 754-2008

 Defines the following different types of floating-point formats:

 Arithmetic format

 All the mandatory operations defined by the standard are supported
by the format. The format may be used to represent floating-point
operands or results for the operations described in the standard.

 Basic format

 This format covers five floating-point representations, three binary
and two decimal, whose encodings are specified by the standard, and
which can be used for arithmetic. At least one of the basic formats is
implemented in any conforming implementation.

 Interchange format

 A fully specified, fixed-length binary encoding that allows data
interchange between different platforms and that can be used for
storage.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

trailing significand field

(c) binary128 format

Figure 10.21 IEEE 754 Formats

biased

exponent

trailing significand field

(b) binary64 format

8 bits

sign

bit

trailing

significand field

(a) binary32 format

biased

exponent

23 bits

11 bits 52 bits

15 bits 112 bits

sign

bit

biased

exponent

sign

bit

Single precision

Double precision

Quadruple precision

* not including implied bit and not including sign bit

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Format
Parameter

binary32 binary64 binary128

Storage width (bits) 32 64 128

Exponent width (bits) 8 11 15

Exponent bias 127 1023 16383

Maximum exponent 127 1023 16383

Minimum exponent –126 –1022 –16382

Approx normal number range
(base 10)

10–38, 10+38 10–308, 10+308 10–4932, 10+4932

Trailing significand width (bits)* 23 52 112

Number of exponents 254 2046 32766

Number of fractions 223 252 2112

Number of values 1.98 ´ 231 1.99 ´ 263 1.99 ´ 2128

Smallest positive normal number 2–126 2–1022 2–16362

Largest positive normal number 2128 – 2104 21024 – 2971 216384 – 216271

Smallest subnormal magnitude 2–149 2–1074 2–16494

Table 10.3 IEEE 754 Format Parameters

+ Additional Formats

 Provide additional bits in the exponent

(extended range) and in the significand

(extended precision)

 Lessens the chance of a final result that

has been contaminated by excessive

roundoff error

 Lessens the chance of an intermediate

overflow aborting a computation whose

final result would have been

representable in a basic format

 Affords some of the benefits of a larger

basic format without incurring the time

penalty usually associated with higher

precision

 Precision and range are defined

under user control

 May be used for intermediate

calculations but the standard

places no constraint or format or

length

Extended Precision Formats

Extendable Precision Format

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
IEEE 754 Floating-Point

Standard

The 1 in (1 + Fraction) is made

implicit  to pack more bits into

the significand

+
Normalized Scientific Notation in

IEEE 754

 In IEEE standard for normalization (used in

computers), a floating point number is said to be

normalized if there is only a single non-zero before

the radix point.

 Example:

123.456

there is only a single non-

zero before the radix

point.

 normalized 1.23456 x 102

1010.1011B  normalized 1.0101011 x 2011

+
Biased Notation in IEEE 754

Bias

In single precision is 127

In double precision 1023

• A fixed value, called the bias, is subtracted from the field to get

the true exponent value.

• An advantage of biased representation is that nonnegative

floating-point numbers can be treated as integers for

comparison purposes.

+

= 25410

+DOUBLE-PRECISION RANGE

+

To convert a decimal number to single (or

double) precision floating point:

 Step 1: Normalize

 Step 2: Determine Sign Bit

 Step 3: Determine exponent

 Step 4: Determine Significand

IEEE 754 Conversion

+

Convert 10.4d to single precision floating

point.

Step 1: Normalize

IEEE 754 Conversion : Example 1

10  00001010

0.4 x 2 = 0.8  0

0.8 x 2 = 1.6  1

0.6 x 2 = 1.2  1

0.2 x 2 = 0.4  0

0.4 x 2 = 0.8  0

0.8 x 2 = 1.6  1

0.4 = .0110 10.4 = 1010.0110 x 20

For continuous results,

take the 1st pattern

before it repeats itself

 1.0100110 x 23

+

Step 2: Determine Sign Bit (S)

Because (10.4) is positive, S = 0

Step 3: Determine exponent

Because its single precision  bias = 127

Exponent = 3 + bias

= 3 + 127

= 130d

= 1000 0010b

IEEE 754 Conversion : Example 1

 1.0100110 x 23

+

 Step4: Determine Significand

Drop the leading 1 of the significand

 Then expand (padding) to 23 bits

IEEE 754 Conversion : Example 1

1.0100110 x 23
 0100110

01001100000000000000000

sign Exponent Significand

0 10000010 01001100000000000000000

+

Convert -0.75d to:

single precision floating point.

double precision floating point.

IEEE 754 Conversion : EXERCISE

+Converting Binary to Decimal Floating-Point

 What decimal number is represented by this single precision float?

 Extract the values:

Sign (1 bit) Exponent(8

bit)

Significand(23 bit)

1 10000001 01000000000000000000000

Remember: Biased notation  (-1)sign x (1 + Fraction) x 2 (exponent-bias)

Sign = 1

Exponent = 10000001b = 129d
The Fraction = -(1 + 0.25)

Significand

= (0 x 2-1) + (1 x 2-2) + (0 x 2-3)

= ¼ = 0.25

The number

= - (1.25 x 2 (exponent-bias))

= - (1.25 x 2 (129 – 127))

= - (1.25 x 22)

= - (1.25 x 4) = -5.0

+
Math basic … fraction number!

68

 .154 = 1/10 + 5/100 + 4/1000

 .1011 = 1/2 + 0/4 + 1/8 + 1/16

1.
1

101
 + 5.

1

102
 + 4.

1

103

1.
1

21
 + 0.

1

22
 + 1.

1

23
 + 1.

1

24

Decimal =

base 10

Binary =

base 2

Table 10.4
IEEE Formats

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Format Type
Format

Arithmetic Format Basic Format Interchange Format

binary16 X
binary32 X X X
binary64 X X X
binary128 X X X
binary{k}

(k = n ´ 32 for n > 4)
X X

decimal64 X X X
decimal128 X X X
decimal{k}

(k = n ´ 32 for n > 4)
X X

extended precision X
extendable precision X

Table 10.5

Interpretation of IEEE 754 Floating-Point Numbers (page 1 of 3)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 Sign Biased exponent Fraction Value

positive zero 0 0 0 0

negative zero 1 0 0 –0

plus infinity 0 all 1s 0 ∞

Minus infinity 1 all 1s 0 –∞

quiet NaN 0 or 1 all 1s
≠ 0; first bit

= 1
qNaN

signaling NaN 0 or 1 all 1s
≠ 0; first bit

= 0
sNaN

positive normal nonzero 0 0 < e < 255 f 2e–127(1.f)

negative normal nonzero 1 0 < e < 255 f –2e–127(1.f)

positive subnormal 0 0 f ≠ 0 2e–126(0.f)

negative subnormal 1 0 f ≠ 0 –2e–126(0.f)

(a) binary32 format

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 Sign Biased exponent Fraction Value

positive zero 0 0 0 0

negative zero 1 0 0 –0

plus infinity 0 all 1s 0 ∞

Minus infinity 1 all 1s 0 –∞

quiet NaN 0 or 1 all 1s
≠ 0; first bit

= 1
qNaN

signaling NaN 0 or 1 all 1s
≠ 0; first bit

= 0
sNaN

positive normal nonzero 0 0 < e < 2047 f 2e–1023(1.f)

negative normal nonzero 1 0 < e < 2047 f –2e–1023(1.f)

positive subnormal 0 0 f ≠ 0 2e–1022(0.f)

negative subnormal 1 0 f ≠ 0 –2e–1022(0.f)

Table 10.5

Interpretation of IEEE 754 Floating-Point Numbers (page 2 of 3)

(a) binary64 format

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 Sign Biased exponent Fraction Value

positive zero 0 0 0 0

negative zero 1 0 0 –0

plus infinity 0 all 1s 0 ∞

minus infinity 1 all 1s 0 –∞

quiet NaN 0 or 1 all 1s
≠ 0; first bit

= 1
qNaN

signaling NaN 0 or 1 all 1s
≠ 0; first bit

= 0
sNaN

positive normal nonzero 0 all 1s f 2e–16383(1.f)

negative normal nonzero 1 all 1s f –2e–16383(1.f)

positive subnormal 0 0 f ≠ 0 2e–16383(0.f)

negative subnormal 1 0 f ≠ 0 –2e–16383(0.f)

Table 10.5

Interpretation of IEEE 754 Floating-Point Numbers (page 3 of 3)

(a) binary128 format

+

10.5

Floating-Point Arithmetic

Addition and Subtraction

Multiplication and Division

Precision Considerations

IEEE Standard for Binary Floating-
Point Arithmetic

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 10.6 Floating-Point Numbers and Arithmetic Operations

Floating Point Numbers Arithmetic Operations

X = Xs ´ BXE

Y = Ys ´ BYE

X + Y = Xs ´ B
XE -YE + Ys() ´ B

YE

X - Y = Xs ´ B
XE -YE - Ys() ´ B

YE

ü

ý
ï

þ
ï

XE £ YE

X ´ Y = Xs ´ Ys() ´ B
XE +YE

X

Y
=

Xs

Ys

æ

è
ç ç

ö

ø
÷ ÷ ´ B

XE -YE

Examples:

X = 0.3 ´ 102 = 30

Y = 0.2 ´ 103 = 200

X + Y = (0.3 ´ 102–3 + 0.2) ´ 103 = 0.23 ´ 103 = 230

X – Y = (0.3 ´ 102–3 – 0.2) ´ 103 = (–0.17) ´ 103 = –170

X ´ Y = (0.3 ´ 0.2) ´ 102+3 = 0.06 ´ 105 = 6000

X ¸ Y = (0.3 ¸ 0.2) ´ 102–3 = 1.5 ´ 10–1 = 0.15

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

SUBTRACT

RETURN

ADD

RETURN

Yes

No

No

No

No

No

No

Yes

Z Y Z X

X = 0?

Figure 10.22 Floating-Point Addition and Subtraction (Z X ± Y)

Yes

Yes

Yes

Yes

Yes

Y = 0?

Increment

smaller

exponent

Shift

significand

right

Add

signed

significands

Shift

significand

right

Put other

number in Z

Round

result

Increment

exponent

Change

sign of Y

Report

underflow

Report

overflow

RETURN

RETURN

RETURN

RETURN

No

No

No

Yes

Yes
Exponents

equal?

Significand

=0?

Exponent

overflow?

Shift

significand

left

Decrement

exponent

Exponent

underflow?

Results

normalized?

Significand

=0?

Significand

overflow?

Z 0

+

Floating-

Point

ALU

76

0
10 1 0 1

Control

Small ALU

Big ALU

Sign Exponent Significand Sign Exponent Significand

Exponent
difference

Shift right

Shift left or right

Rounding hardware

Sign Exponent Significand

Increment or
decrement

0 10 1

Shift smaller

number right

Compare

exponents

Add

Normalize

Round

Block diagram of an arithmetic unit dedicated to floating-point

addition.

+ Simplified Floating-Point Addition

Flows

+
Decimal Floating-Point Addition

• Assume 4 decimal digits for significand and 2 decimal

digits for exponent

Step 1: Align the decimal point of the number that has the smaller

exponent

Step 2: Add the significand

• check for overflow/underflow of the significant

Step 3: Normalize the sum

• check for overflow/underflow of the exponent after

normalisation

Step 4: Round the significand

• If the significand does not fit in the space reserved for

it, it has to be rounded off

Step 5: Normalize it (if need be)

+
A) Decimal Floating-Point Addition

• Step 1: Align the decimal point of the number that has the

smaller exponent

• Step 2: add the significand

Example: 9.999d x 101 + 1.610d x 10-1

Make 1.610d x 10-1 to 101

-1 + x = 1  x = 2  move 2 to left

 0.0161d x 101

9.9990 x 101

+ 0.0161d x 101

10.0151 x 101

+
A) Decimal Floating-Point

Addition

• Step 3: Normalize the sum

• Step 4: Round the significand (to 4 decimal digits for

significand)

• Step 5: Normalize it (if need be)

Example: 9.999d x 101 + 1.610d x 10-1

10.0151 x 101
 1.00151 x 102

1.00151 x 102
 1.0015 x 102

No need as its normalized

+
B) Binary Floating-Point

Addition

• Convert the numbers to binary

• Step 1: Align the decimal point of the number that has the

smaller exponent

0.5  0.10b x 20
 1.0b x 2-1

Example: 0.5d + (-0.4375d)

-0.4375  -0.0111b x 20
 -1.11b x 2-2

Make 1.11b x 2-2 to 2-1

-2 + x = -1  x = 1  move 1 to left

- 0.111b x 2-1

+
B) Binary Floating-Point Addition

• Step 2: add the significand

• Step 3: Normalize the sum

• Step 4: Round the significand (to 4 decimal digits for significand)

• Step 5: Normalize it (if need be)

1.000 x 2-1

+ -0.111 x 2-1

Example: 0.5d + (-0.4375d)

0.001 × 2-1
 1.0000 × 2-4

Fits in the 4 decimal digits

No need as its normalized

1.000 x 2-1

− 0.111 x 2-1

0.001 × 2-1

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

MULTIPLY

RETURN

RETURN

Yes

No

Z 0

X = 0?

Figure 10.23 Floating-Point Multiplication (Z X Y)

Yes

Yes

Yes

Subtract Bias

Add

Exponents

Report

Overflow

Multiply

Significands

Y = 0?

Exponent

Overflow?

Normalize

Round

Exponent

Underflow?

No

No

No

Report

Underflow

+
Floating-Point Multiplication

 Step 1: Add the exponent of the 2 numbers

 Step 2: Subtract bias

 check for overflow/underflow of the exponent after

normalization

 Step 3: Multiply the significands

 Step 4: Normalize the product

 Step 5: Round the significand

 If the significand does not fit in the space reserved for

it, it has to be rounded off

 Step 6: Set the sign of the product

+
A) Floating-Point Multiplication

(decimal) 85

• Assume 4 decimal digits for significand and 2 decimal digits for

exponent

• Step 1: Add the exponent of the 2 numbers

• Step 2: Subtract bias

Example: (1.110d x 1010) x (9.200d x 10-5)

10 + (-5) = 5

10 + (-5) + 127 = 132

+
A) Floating-Point Multiplication

(decimal) 86

• Assume 4 decimal digits for significand and 2 decimal digits for

exponent

• Step 1: Add the exponent of the 2 numbers

• Step 2: Subtract bias

• Step 2: Multiply the significands

Example: (1.110d x 1010) x (9.200d x 10-5)

10 + (-5) = 5 If biased is considered  10 + (-5) + 127 = 132

9.200

x 1.110

92000

9200

9200

10.212000

 10.212000 10.2120 x 105

+A) Floating-Point Multiplication

(decimal)
87

• Step 3: Normalize the product

• Step 4: Round the significand (4 decimal digits for
significand)

• Step 5: Normalize it (if need be)

• Step 6: Set the sign of the product

Example: (1.110d x 1010) x (9.200d x 10-5)

10.2120 x 105
 1.02120 x 106

1.0212 x 106

Still normalized

+1.0212 x 106

+B) Floating-Point Multiplication

(binary)
88

• Assume 4 binary digits for significand and 2 binary digits

for exponent

• Step 1: Add the exponent of the 2 numbers

• Step 2: Multiply the significands

-1 + (-2) = -3 If biased is considered  -1 + (-2) + 127 = 124

1.110

x 1.000

1110000

-> 1.110000

 1.110000 1.110000 x 2-3

Example: (1.000b x 2-1) x (-1.110b x 2-2)

+B) Floating-Point Multiplication (binary)

89

• Step 3: Normalize the product

• Step 4: Round the significand (4 binary digits for
significand)

• Step 5: Normalize it (if need be)

• Step 6: Set the sign of the product

Example: (1.000b x 2-1) x (-1.110b x 2-2)

1.110000 x 2-3
 already normalized

1.1100 x 2-3

Still normalized

-1.1100b x 2-3
 -7/32 d

+
Precision Considerations

 IEEE standard approaches:

 Round to nearest:

 The result is rounded to the nearest representable
number.

 Round toward +∞ :

 The result is rounded up toward plus infinity.

 Round toward -∞:

 The result is rounded down toward negative infinity.

 Round toward 0:

 The result is rounded toward zero.

Rounding

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Interval Arithmetic

 Minus infinity and rounding

to plus are useful in

implementing interval

arithmetic

 Provides an efficient method for
monitoring and controlling errors in
floating-point computations by
producing two values for each result

 The two values correspond to the
lower and upper endpoints of an
interval that contains the true result

 The width of the interval indicates
the accuracy of the result

 If the endpoints are not
representable then the interval
endpoints are rounded down and up
respectively

 If the range between the upper and
lower bounds is sufficiently narrow
then a sufficiently accurate result has
been obtained

 Round toward zero

 Extra bits are ignored

 Simplest technique

 A consistent bias toward zero in
the operation

 Serious bias because it affects
every operation for which
there are nonzero extra bits

Truncation

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+ Summary

 ALU

 Integer representation

 Sign-magnitude

representation

 Twos complement

representation

 Range extension

 Fixed-point representation

 Floating-point representation

 Principles

 IEEE standard for binary

floating-point representation

 Integer arithmetic

 Negation

 Addition and subtraction

 Multiplication

 Division

 Floating-point arithmetic

 Addition and subtraction

 Multiplication and division

 Precision consideration

 IEEE standard for binary

floating-point arithmetic

Chapter 10

Computer

Arithmetic

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

