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Objectives

Understand the fundamentals of numerical data

representation and manipulation in digital 

computers.

Master the skill of converting between various radix 

systems.

Understand how errors can occur in computations 

because of overflow and truncation.

Understand the fundamental concepts of floating-

point representation.
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10.1Arithmetic & Logic Unit (ALU)

 Part of the computer that actually performs arithmetic and 

logical operations on data

 All of the other elements of the computer system are there 

mainly to bring data into the ALU for it to process and then to 

take the results back out

 Based on the use of simple digital logic devices that can store 

binary digits and perform simple Boolean logic operations
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ALU

Control

Signals

Operand

Registers

Flags

Result

Registers

Figure 10.1  ALU Inputs and Outputs
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10.2 

Integer Representation

Sign-Magnitude Representation

Twos Complement Representation

Range Extension

Fixed-Point Representation
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Unsigned Numbers 

• For positive number only.

• Range number = 0 to 2n-1

• There is no negative values representation.

If 32 bits long.

Range of numbers that can be represented 

= 0 to (232 – 1) = 0 to 4,294,967,295
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Integer Representation

 In the binary number system arbitrary numbers can be 

represented with: 

 The digits zero and one

 The minus sign (for negative numbers)

 The period, or radix point (for numbers with a fractional 

component)

 For purposes of computer storage and processing we do not 

have the benefit of special symbols for the minus sign and 

radix point

 Only binary digits (0,1) may be used to represent numbers
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Signed Numbers

• Integers as binary values can be positive or negative.

• Problem: 

• How to represent and encode the actual sign of a 

number?

• Solution: 

• Need code to represent the signs.

• Three signed representations covered:

• Signed Magnitude

• Ones Complement

• Twos Complement



Sign-Magnitude Representation

There are several alternative 
conventions used to represent 

negative as well as positive 
integers

Sign-magnitude representation is 
the simplest form that employs a 

sign bit

Drawbacks:

Because of these drawbacks, 
sign-magnitude representation is 
rarely used in implementing the 

integer portion of the ALU

•All of these alternatives involve treating the 
most significant (leftmost) bit in the word as a 
sign bit

•If the sign bit is 0 the number is positive

•If the sign bit is 1 the number is negative

•Addition and subtraction require a 
consideration of both the signs of the 
numbers and their relative magnitudes to 
carry out the required operation

•There are two representations of 0
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Table 10.1  
Characteristics of Twos Complement Representation and Arithmetic 
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Range –2n–1 through 2n–1 – 1 

Number of Representations 
of Zero 

One 

Negation 
Take the Boolean complement of each bit of the corresponding 

positive number, then add 1 to the resulting bit pattern viewed as 

an unsigned integer. 

Expansion of Bit Length 
Add additional bit positions to the left and fill in with the value 

of the original sign bit. 

Overflow Rule 
If two numbers with the same sign (both positive or both 

negative) are added, then overflow occurs if and only if the result 

has the opposite sign. 

Subtraction Rule 
To subtract B from A, take the twos complement of B and add it 

to A. 
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Decimal 

Representation 

Sign-Magnitude 

Representation 

Twos Complement 

Representation 

Biased  

Representation 

+8 — — 1111 

+7 0111 0111 1110 

+6 0110 0110 1101 

+5 0101 0101 1100 

+4 0100 0100 1011 

+3 0011 0011 1010 

+2 0010 0010 1001 

+1 0001 0001 1000 

+0 0000 0000 0111 

–0 1000 — — 

–1 1001 1111 0110 

–2 1010 1110 0101 

–3 1011 1101 0100 

–4 1100 1100 0011 

–5 1101 1011 0010 

–6 1110 1010 0001 

–7 1111 1001 0000 

–8 — 1000 — 

 

Table 10.2  
Alternative Representations for 4-Bit Integers 
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–128 64 32 16 8 4 2 1 

        

 

(a) An eight-position two's complement value box 

 

 

 

–128 64 32 16 8 4 2 1  

1 0 0 0 0 0 1 1  

–128      +2 +1 = –125 

 

(b) Convert binary 10000011 to decimal 

 

 

 

 –128 64 32 16 8 4 2 1  

 1 0 0 0 1 0 0 0  

–120 = –128    +8     

 

(c) Convert decimal –120 to binary 

 

 

Figure 10.2  Use of a Value Box for Conversion 

Between Twos Complement Binary and Decimal 
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Range Extension

 Range of numbers that can be expressed is extended by 

increasing the bit length

 In sign-magnitude notation this is accomplished by moving the sign 

bit to the new leftmost position and fill in with zeros

 This procedure will not work for twos complement negative integers

 Rule is to move the sign bit to the new leftmost position and fill in with 

copies of the sign bit

 For positive numbers, fill in with zeros, and for negative numbers, fill in 

with ones

 This is called 

sign extension
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00000010 00000000 00000010

11111110 11111111 11111110

Sign bit Sign bitSign bit 

extended



Fixed-Point Representation

The radix point (binary 
point) is fixed and assumed 

to be to the right of the 
rightmost digit

Programmer can use the 
same representation for 

binary fractions by scaling 
the numbers so that the 
binary point is implicitly 
positioned at some other 

location
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10.3 

Integer Arithmetic

Negation

Addition and Subtraction

Multiplication

Division
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Negation

 Twos complement operation

 Take the Boolean complement of each bit of the integer (including the 

sign bit)

 Treating the result as an unsigned binary integer, add 1

(twos complement)

 The negative of the negative of that number is itself:

+18 = 00010010 

bitwise complement = 11101101

+              1

11101110 = -18

-18 =  11101110 

bitwise complement =  00010001

+               1

00010010 = +18 (twos complement)
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Negation Special Case 1 (0)

0    =                00000000    

Bitwise complement  =                 11111111

Add 1 to LSB              +                 1

Result           100000000 (twos complement)

Overflow is ignored, so:

- 0 = 0 
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Negation Special Case 2 (-128)

+128     =        10000000

Bitwise complement   =         01111111

Add 1 to LSB                          +                1

Result            10000000 (twos complement)

So:

-(-128) = -128   X

Monitor MSB (sign bit)

It should change during negation

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.
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    1001 = –7 

   +0101 =  5 

    1110 = –2 

    1100 = –4 

   +0100 =  4 

   10000 =  0 

(a) (–7) + (+5) (b) (–4) + (+4) 

 

    0011 = 3 

   +0100 = 4 

    0111 = 7 

 

    1100 = –4 

   +1111 = –1 

   11011 = –5 

(c) (+3) + (+4) (d) (–4) + (–1) 

 

    0101 = 5 

   +0100 = 4 

    1001 = Overflow 

 

    1001 = –7 

   +1010 = –6 

   10011 = Overflow 

(e) (+5) + (+4) (f) (–7) + (–6) 

 

Figure 10.3  Addition of Numbers in Twos Complement Representation 
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OVERFLOW RULE: 

If two numbers are added, 

and they are both positive or 

both negative, then overflow 

occurs if and only if the result 

has the opposite sign.

Overflow

Rule
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Overflow in Humankind History



+ 

SUBTRACTION RULE: 

To subtract one number 

(subtrahend) from 

another (minuend), take 

the twos complement 

(negation) of the 

subtrahend and add it

to the minuend.

Subtraction

Rule
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        0010 =  2 

       +1001 = –7 

        1011 = –5 

 

        0101 =  5 

       +1110 = –2 

       10011 =  3 

 

(a) M = 2 = 0010 

    S = 7 = 0111 

   –S =     1001 

 

(b) M = 5 = 0101 

    S = 2 = 0010 

   –S =     1110 

 

 

        1011 = –5 

       +1110 = –2 

       11001 = –7 

 

 

        0101 = 5 

       +0010 = 2 

        0111 = 7 

(c) M =–5 = 1011 

    S = 2 = 0010 

   –S =     1110 

 

(d) M = 5 = 0101 

    S =–2 = 1110 

   –S =     0010 

 

 

        0111 = 7 

       +0111 = 7 

        1110 = Overflow 

 

 

        1010 = –6 

       +1100 = –4 

       10110 = Overflow 

(e) M =  7 = 0111 

    S = –7 = 1001 

   –S =      0111 

 

(f) M = –6 = 1010 

    S =  4 = 0100 

   –S =      1100 

 

 

Figure 10.4  Subtraction of Numbers in Twos Complement Representation (M – S) 
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AdderOF

OF = overflow bit

SW = Switch (select addition or subtraction)

Complementer

Figure 10.6   Block Diagram of Hardware for Addition and Subtraction

A RegisterB Register

SW
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Figure 10.7  Multiplication of Unsigned Binary Integers

    1011

    1101

    1011

   0000

  1011

 1011

10001111

Multiplicand (11)

Multiplier (13)

Product (143)

Partial products

 Paper and pencil example (unsigned): 

 3 versions of multiply hardware & algorithm: 
•successive refinement 
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Refer to:

Chapter 3 , page 184

28

Hardware implementation:

multiplication & division



+ 1st Version of 

Multiplication 

Hardware

Flows of 1st Version 

Multiplication

64-bit ALU

Control test

Multiplier

Shift right

Product

Write

Multiplicand

Shift left

64 bits

64 bits

32 bits

Done

1. Test 

Multiplier0

1a. Add multiplicand to product and 

place the result in Product register

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No:  < 32 repetitions

Yes:  32 repetitions

Multiplicand register, product register, ALU are

64-bit wide; multiplier register is 32-bit wide

Algorithm

32-bit multiplicand starts at right half of multiplicand register

Product register is initialized at 0

29
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Example of Multiplication – 4 bits

30

 Example : 2 x 3 = ?

 2 x 3   0010 x 0011

 Steps:

 1a – test LSB for multiplier (0 or 1)

 If 1 then P = P + MC

 If 0 then no operation

 2 – shift MC left

 3 – shift MP right

 All bits done?

 If still <max bit, repeat

 If = max bit, stop

Multiplier 

(MP)

Multiplicand 

(MC)

Product 

(P)

Done

1. Test 

Multiplier0

1a. Add multiplicand to product and 

place the result in Product register

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No:  < 32 repetitions

Yes:  32 repetitions

No: < 4 repetitions

Yes: 4 repetitions

4th 

repetition

?
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Iteration Step

Multiplier 

(MP)

Multiplicand

(MC)
Product (P)

0 Initial value 0011 0000 0010 0000 0000

1

1a:1P = P + MC

2: Shift MC left

3: Shift MP right

2

1a:1P = P + MC

2: Shift MC left

3: Shift MP right

3

1a:0no operation

2: Shift MC left

3: Shift MP right

4

1a:0no operation

2: Shift MC left

3: Shift MP right

0000 0010

0000 0100

0001

0000 0110

0000 1000

0000

0001 0000

0000

0010 0000

0000

Exercise: Try with  5 x 4 

2 x 3   ( 0010 x 0011 )
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Mn-1

Multiplicand

(a) Block Diagram

(b) Example from Figure 9.7 (product in A, Q)

Figure 10.8  Hardware Implementation of

Unsigned Binary Multiplication

Add

Shift Right

Multiplier

n-Bit Adder
Shift and Add

Control Logic

M0

An-1C A0 Qn-1 Q0

C

0

0

0

0

0

0

1

0

A

0000

1011

0101

0010

1101

0110

0001

1000

Q

1101

1101

1110

1111

1111

1111

1111

1111

M

1011

1011

1011

1011

1011

1011

1011

1011

Initial Values

Add

Shift

Shift

Add

Shift

Add

Shift

First

Cycle

Second

Cycle

Third

Cycle

Fourth

Cycle

1-bit carry register
32-bit Product register 
32-bit Multiplier register
32-bit Multiplicand register

Multiply Hardware - Version 2 
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START

END
YesNo

No Yes

C, A     0

M     Multiplicand

Q     Multiplier

Count     n

Shift right C, A, Q

Count     Count – 1

C, A     A + M

Q0 = 1?

Count = 0? Product

in A, Q

Figure 10.9  Flowchart for Unsigned Binary Multiplication

Multiplication 

Version 2

C    A       Q      MC   ;C = carry

1. 0 0000 0011 0010
2. 0 0010 0011 0010 ;A = A+M
3. 0 0001 0001 0010 ;SR
4. 0 0011 0001 0010 ;A = A+M
5. 0 0001 1000 0010 ;SR
6. 0 0000 1100 0010 ;SR
7. 0 0000 0110 0010 ;SR
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     1011 

    ´1101 

 00001011 1011 ´ 1 ´ 20
 

 00000000 1011 ´ 0 ´ 21 

 00101100 1011 ´ 1 ´ 22 

 01011000 1011 ´ 1 ´ 23
 

 10001111 

 

Figure 10.10  Multiplication of Two Unsigned 4-Bit Integers Yielding an 8-Bit 

Result 
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    1001 (9) 

   ´0011 (3) 

00001001 1001 ´ 20
 

00010010 1001 ´ 21
 

00011011 (27) 

 

    1001 (–7) 

   ´0011 (3) 

11111001 (–7) ´ 20
 = (–7) 

11110010 (–7) ´ 21
 = (–14) 

11101011 (–21) 

(a) Unsigned integers (b) Twos complement integers 

 

 

Figure 10.11  Comparison of Multiplication of Unsigned and Twos 

Complement Integers 
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START

END
YesNo

= 10 = 01

= 11

= 00

A    0, Q-1    0

M    Multiplicand

Q    Multiplier

Count    n

Arithmetic Shift

Right: A, Q, Q-1
Count    Count – 1

A    A + MA    A – M

Q0 , Q-1

Count = 0?

Figure 10.12  Booth's Algorithm for Twos Complement Multiplication
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Figure 10.13  Example of Booth's Algorithm (7    3)

Q-1
0

0

1

1

1

0

0

A

0000

1001

1100

1110

0101

0010

0001

Q

0011

0011

1001

0100

0100

1010

0101

M

0111

0111

0111

0111

0111

0111

0111

Initial Values

A   A - M

Shift

Shift

A   A + M

Shift

Shift

First

Cycle

Second

Cycle

Third

Cycle

Fourth

Cycle
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    0111 

   ´0011 (0) 

11111001 1–0 

0000000  1–1 

000111   0–1  

00010101 (21)  

 

    0111 

   ´1101 (0) 

11111001 1–0 

0000111  0–1 

111001   1–0  

11101011 (–21)  

(a) (7) ´ (3) = (21) (b) (7) ´ (–3) = (–21) 

 

    1001 

   ´0011 (0) 

00000111 1–0 

0000000  1–1 

111001   0–1  

11101011 (–21)  

 

    1001 

   ´1101 (0) 

00000111 1–0 

1111001  0–1 

000111   1–0  

00010101 (21)  

(c) (–7) ´ (3) = (–21) (d) (–7) ´ (–3) = (21) 

 

 

Figure 10.14  Examples Using Booth's Algorithm 
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Figure 10.15  Example of Division of Unsigned Binary Integers

     00001101

1011 10010011

      1011

     001110

       1011

       001111

         1011

          100

Quotient

DividendDivisor

Remainder

Partial

remainders



+ 1st Version of 

Division 

Hardware

40

64-bit ALU

Control 

test

Quotient

Shift left

Remainder

Write

Divisor

Shift right

64 bits

64 bits

32 bits

Divisor register, remainder register, ALU are
64-bit wide; quotient register is 32-bit wide

32-bit divisor starts at left half of divisor register

Remainder register is initialized with the dividend at right

Quotient register is
initialized to be 0

Done

Test Remainder

2a. Shift the Quotient register to the left, 

setting the new rightmost bit to 1

3. Shift the Divisor register right 1 bit

33rd repetition?

Start

Remainder < 0

No:  < 33 repetitions

Yes:  33 repetitions

2b. Restore the original value by adding 

the Divisor register to the Remainder 

register and place the sum in the 

Remainder register. Also shift the 

Quotient register to the left, setting the 

new least significant bit to 0

1. Subtract the Divisor register from the 

Remainder register and place the 

 result in the Remainder register

Remainder > 0

 

–

Algorithm

Flows of 1st Version 

Division

Divisor starts at left 

half of divisor register

Remainder initialized with dividend at 

right
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Done

Test Remainder

2a. Shift the Quotient register to the left, 

setting the new rightmost bit to 1

3. Shift the Divisor register right 1 bit

33rd repetition?

Start

Remainder < 0

No:  < 33 repetitions

Yes:  33 repetitions

2b. Restore the original value by adding 

the Divisor register to the Remainder 

register and place the sum in the 

Remainder register. Also shift the 

Quotient register to the left, setting the 

new least significant bit to 0

1. Subtract the Divisor register from the 

Remainder register and place the 

 result in the Remainder register

Remainder > 0

 

–

Example of Division – 4 bits 41

5th
4. If not yet 5  repeat to 

Step 1 (new iteration)

 Example : 7 / 2 = ?

 7 / 2   0111 / 0010

Steps:

 1 – Remainder (R) = R – D

 2 – test new R (>=0 or <0)

 2a - If R>=0 then 

 R = no operation; 

 Q = Shift left (add 1 at LSB)

 2b - If R<0 then 

 R = D + R

 Q = Shift left (add 0 at LSB)

 3 – shift D right

 All bits done?

 If still <(max bit + 1), repeat

 If = (max bit+1), stop

Divisor 

(D)

Dividend 

(DD)

Quotient 

(Q)

No: < 5 repetitions

Yes:  = 5 repetitions
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Iterati

on
Step

Quotient 

(Q)
Divisor (D)

Remainder (

R)

0 Initial value 0000 0010 0000 0000 0111

1

1. R = R - D

2b. R < 0; R = D + R

Q = Shift left (add 0 at LSB)

3. D = Shift right

2

1. R = R - D

2b. R < 0; R = D + R

Q = Shift left (add 0 at LSB)

3. D = Shift right

Example: 

7 ÷ 2 

( 0111 ÷ 0010 )

1110 0111

1111 0111

0000 0111

0000

0001 0000

0000 0111

0000

0000 1000



43Iterati

on
Step

Quotient 

(Q)

Divisor

(D)

Remainder    

( R)

3

1. R = R – D 1111 1111

2b. R < 0; R = D + R 0000 0111

Q = Shift left (add 0 at LSB) 0000

3. D = Shift right 0000 0100

4

1. R = R - D 0000 0011

2a. R >=0; R = no operation

Q = Shift left (add 1 at LSB) 0001

3. D = Shift right 0000 0010

5

1. R = R - D 0000 0001

2a. R >=0; R = no operation

Q = Shift left (add 1 at LSB) 0011

3. D = Shift right 0000 0001

3

17/2 = 3 remainder 1

0000 0000 1000

Exercise: Try with  6 / 4 
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START

END
YesNo

No Yes

Quotient in Q

Remainder in A

A     0

M     Divisor

Q     Dividend

Count     n

Shift Left

A, Q

A     A – M

Count     Count – 1

Q0     1
Q0     0

A     A + M

A < 0?

Count = 0?

Figure 10.16  Flowchart for Unsigned Binary Division
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A Q  
0000 

 

0111 Initial value 

0000 

1101 

1101 

0000 

1110 

 

 

1110 

Shift 

Use twos complement of 0011 for subtraction 

Subtract 

Restore, set Q
0
 = 0 

0001 

1101 

1110 

0001 

1100 

 

 

1100 

Shift 

 

Subtract 

Restore, set Q
0
 = 0 

0011 

1101 

0000 

1000 

 

1001 

Shift 

 

Subtract, set Q
0
 = 1 

0001 

1101 

1110 

0001 

0010 

 

 

0010 

Shift 

 

Subtract 

Restore, set Q
0
 = 0 

 

Figure 10.17  Example of Restoring Twos Complement Division (7/3) 



+

10.4 

Floating-Point Representation

Principles

IEEE Standards for Binary-Floating 
Point Representation
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10.4 Floating-Point Representation

 With a fixed-point notation it is possible to represent a range 

of positive and negative integers centered on or near 0

 By assuming a fixed binary or radix point, this format allows 

the representation of numbers with a fractional component as 

well

 Limitations:

 Very large numbers cannot be represented nor can very small 

fractions

 The fractional part of the quotient in a division of two large 

numbers could be lost

Principles

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.
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8 bits

sign of

significand

significand

23 bits

(a) Format

(b) Examples

Figure 10.18   Typical 32-Bit Floating-Point Format

 1.1010001    210100  = 0 10010011 10100010000000000000000 =  1.6328125    220 

-1.1010001    210100  = 1 10010011 10100010000000000000000 = –1.6328125    220

 1.1010001    2-10100 = 0 01101011 10100010000000000000000 =  1.6328125    2–20

-1.1010001    2-10100 = 1 01101011 10100010000000000000000 = –1.6328125    2–20

biased exponent
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Floating-Point

 The final portion of the word

 Any floating-point number can be expressed in many ways

 Normal number (normalized)

 The most significant digit of the significand is nonzero

Significand

The following are equivalent, where the significand is 

expressed in binary form:

0.110 * 25

110 * 22

0.0110 * 26 (unnormalized)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.
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Normalization Process

 Normalization is the process of deleting the zeroes until a non-zero 

value is detected.

 Example :

A rule of thumb:

moving the radix point to the right subtract exponent

moving the radix point to the left add exponent

0.00234 x 104  0.234 x 104-2
 0.234 x 102

12.0024 x 104  0.120024 x 104+2
 0.120 x 106

 Move radix point to the left (in this case 2 points)

Move radix point to the right (in this case 2 points)
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Expressible Integers

Expressible Negative

Numbers

Negative

Overflow

Positive

Overflow

Negative

Underflow

Zero

Positive

Underflow

Expressible Positive

Numbers

(a) Twos Complement Integers

(b) Floating-Point Numbers

Figure 10.19  Expressible Numbers in Typical 32-Bit Formats

Number

Line

Number

Line

0

0

231 – 1

2–127

–231

–2–127– (2 – 2–23)    2128 (2 – 2–23)    2128

If number is 

too tiny to be 

represented

Accurate Arithmetic: Overflow & Underflow



IEEE Standard 754

Most important floating-point 
representation is defined

Standard was developed to 
facilitate the portability of 

programs from one 
processor to another and to 
encourage the development 
of sophisticated, numerically 

oriented programs

Standard has been widely 
adopted and is used on 

virtually all contemporary 
processors and arithmetic 

coprocessors

IEEE 754-2008 covers both 
binary and decimal floating-

point representations
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+
IEEE 754-2008

 Defines the following different types of floating-point formats:

 Arithmetic format

 All the mandatory operations defined by the standard are supported 
by the format.  The format may be used to represent floating-point 
operands or results for the operations described in the standard.

 Basic format

 This format covers five floating-point representations, three binary 
and two decimal, whose encodings are specified by the standard, and 
which can be used for arithmetic.  At least one of the basic formats is 
implemented in any conforming implementation.

 Interchange format

 A fully specified, fixed-length binary encoding that allows data 
interchange between different platforms and that can be used for 
storage.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.
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trailing significand field

(c) binary128 format

Figure 10.21   IEEE 754 Formats

biased

exponent

trailing significand field

(b) binary64 format

8 bits
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bit

trailing

significand field

(a) binary32 format

biased

exponent

23 bits

11 bits 52 bits

15 bits 112 bits

sign

bit

biased

exponent

sign

bit

Single precision

Double precision

Quadruple precision



* not including implied bit and not including sign bit
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Format 
Parameter 

binary32 binary64 binary128 

Storage width (bits) 32 64 128 

Exponent width (bits) 8 11 15 

Exponent bias 127 1023 16383 

Maximum exponent 127 1023 16383 

Minimum exponent –126 –1022 –16382 

Approx normal number range 
(base 10) 

10–38, 10+38 10–308, 10+308 10–4932, 10+4932 

Trailing significand width (bits)* 23 52 112 

Number of exponents 254 2046 32766 

Number of fractions 223 252 2112 

Number of values 1.98 ´ 231 1.99 ´ 263 1.99 ´ 2128 

Smallest positive normal number 2–126 2–1022 2–16362 

Largest positive normal number 2128 – 2104 21024 – 2971 216384 – 216271 

Smallest subnormal magnitude 2–149 2–1074 2–16494 

 

Table 10.3  IEEE 754 Format Parameters 



+ Additional Formats

 Provide additional bits in the exponent 

(extended range) and in the significand 

(extended precision)

 Lessens the chance of a final result that 

has been contaminated by excessive 

roundoff error

 Lessens the chance of an intermediate 

overflow aborting a computation whose 

final result would have been 

representable in a basic format

 Affords some of the benefits of a larger 

basic format without incurring the time 

penalty usually associated with higher 

precision

 Precision and range are defined 

under user control

 May be used for intermediate 

calculations but the standard 

places no constraint or format or 

length

Extended Precision Formats

Extendable Precision Format
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+
IEEE 754 Floating-Point 

Standard

The 1 in (1 + Fraction) is made 

implicit  to pack more bits into 

the significand



+
Normalized Scientific Notation in 

IEEE 754

 In IEEE standard for normalization (used in

computers), a floating point number is said to be

normalized if there is only a single non-zero before

the radix point.

 Example:

123.456

there is only a single non-

zero before the radix

point.

 normalized 1.23456 x 102

1010.1011B  normalized 1.0101011 x 2011



+
Biased Notation in IEEE 754

Bias 

In single precision is 127

In double precision 1023

• A fixed value, called the bias, is subtracted from the field to get 

the true exponent value.

• An advantage of biased representation is that nonnegative

floating-point numbers can be treated as integers for

comparison purposes.



+

= 25410



+DOUBLE-PRECISION RANGE



+

To convert a decimal number to single (or 

double) precision floating point:

 Step 1: Normalize

 Step 2: Determine Sign Bit

 Step 3: Determine exponent

 Step 4: Determine Significand

IEEE 754 Conversion 



+

Convert 10.4d to single precision floating 

point.

Step 1: Normalize

IEEE 754 Conversion : Example 1 

10  00001010

0.4 x 2 =  0.8  0

0.8   x 2 = 1.6  1

0.6  x  2  = 1.2  1

0.2 x 2  = 0.4  0

0.4 x 2 = 0.8  0

0.8 x 2 = 1.6  1 

0.4 = .0110 10.4  = 1010.0110 x 20

For continuous results, 

take the 1st pattern 

before it repeats itself

 1.0100110 x 23



+

Step 2: Determine Sign Bit (S)

Because (10.4) is positive, S = 0

Step 3: Determine exponent

Because its single precision  bias = 127

Exponent = 3 + bias 

= 3 + 127 

= 130d

= 1000 0010b

IEEE 754 Conversion : Example 1 

 1.0100110 x 23



+

 Step4:  Determine Significand

Drop the leading 1 of the significand

 Then expand (padding) to 23 bits

IEEE 754 Conversion : Example 1 

1.0100110 x 23
 0100110

01001100000000000000000

sign Exponent Significand

0 10000010 01001100000000000000000



+

Convert -0.75d to:

single precision floating point.

double precision floating point.

IEEE 754 Conversion : EXERCISE



+Converting Binary to Decimal Floating-Point

 What decimal number is represented by this single precision float?

 Extract the values:

Sign (1 bit) Exponent(8 

bit) 

Significand(23 bit) 

1 10000001 01000000000000000000000

Remember: Biased notation  (-1)sign x (1 + Fraction) x 2 (exponent-bias)

Sign = 1

Exponent = 10000001b  = 129d
The Fraction  = -(1 + 0.25) 

Significand

= (0 x 2-1) + (1 x 2-2) + (0 x 2-3)

=  ¼ = 0.25

The number

= - (1.25 x 2 (exponent-bias) )

= - (1.25 x 2 ( 129 – 127 ) )

= - (1.25 x 22)

= - (1.25 x 4) = -5.0



+
Math basic … fraction number!

68

 .154 = 1/10 + 5/100 + 4/1000

 .1011 = 1/2 + 0/4 + 1/8 + 1/16

1.
1

101
 + 5.

1

102
 + 4.

1

103

1.
1

21
 + 0.

1

22
 + 1.

1

23
 + 1.

1

24

Decimal = 

base 10

Binary = 

base 2



Table 10.4   
IEEE Formats 
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Format Type 
Format 

Arithmetic Format Basic Format Interchange Format 

binary16   X 
binary32 X X X 
binary64 X X X 
binary128 X X X 
binary{k} 

(k =  n ´  32 for n > 4) 
X  X 

decimal64 X X X 
decimal128 X X X 
decimal{k} 

(k =  n ´  32 for n > 4) 
X  X 

extended precision X   
extendable precision X   
 



Table 10.5  

Interpretation of IEEE 754 Floating-Point Numbers (page 1 of 3) 
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 Sign Biased exponent Fraction Value 

positive zero 0 0 0 0 

negative zero 1 0 0 –0 

plus infinity 0 all 1s 0 ∞ 

Minus infinity 1 all 1s 0 –∞ 

quiet NaN 0 or 1 all 1s 
≠ 0; first bit 

= 1 
qNaN 

signaling NaN 0 or 1 all 1s 
≠ 0; first bit 

= 0 
sNaN 

positive normal nonzero 0 0 < e < 255 f 2e–127(1.f) 

negative normal nonzero 1 0 < e < 255 f –2e–127(1.f) 

positive subnormal 0 0 f ≠ 0 2e–126(0.f) 

negative subnormal 1 0 f ≠ 0 –2e–126(0.f) 

 

(a) binary32 format
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 Sign Biased exponent Fraction Value 

positive zero 0 0 0 0 

negative zero 1 0 0 –0 

plus infinity 0 all 1s 0 ∞ 

Minus infinity 1 all 1s 0 –∞ 

quiet NaN 0 or 1 all 1s 
≠ 0; first bit 

= 1 
qNaN 

signaling NaN 0 or 1 all 1s 
≠ 0; first bit 

= 0 
sNaN 

positive normal nonzero 0 0 < e < 2047 f 2e–1023(1.f) 

negative normal nonzero 1 0 < e < 2047 f –2e–1023(1.f) 

positive subnormal 0 0 f ≠ 0 2e–1022(0.f) 

negative subnormal 1 0 f ≠ 0 –2e–1022(0.f) 

 

Table 10.5  

Interpretation of IEEE 754 Floating-Point Numbers (page 2 of 3) 

(a) binary64 format
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 Sign Biased exponent Fraction Value 

positive zero 0 0 0 0 

negative zero 1 0 0 –0 

plus infinity 0 all 1s 0 ∞ 

minus infinity 1 all 1s 0 –∞ 

quiet NaN 0 or 1 all 1s 
≠ 0; first bit 

= 1 
qNaN 

signaling NaN 0 or 1 all 1s 
≠ 0; first bit 

= 0 
sNaN 

positive normal nonzero 0 all 1s f 2e–16383(1.f) 

negative normal nonzero 1 all 1s f –2e–16383(1.f) 

positive subnormal 0 0 f ≠ 0 2e–16383(0.f) 

negative subnormal 1 0 f ≠ 0 –2e–16383(0.f) 

 

Table 10.5  

Interpretation of IEEE 754 Floating-Point Numbers (page 3 of 3) 

(a) binary128 format



+

10.5 

Floating-Point Arithmetic

Addition and Subtraction

Multiplication and Division

Precision Considerations

IEEE Standard for Binary Floating-
Point Arithmetic

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.
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Table 10.6  Floating-Point Numbers and Arithmetic Operations 
 

Floating Point Numbers Arithmetic Operations 

  

X = Xs ´ BXE

Y = Ys ´ BYE
 

X + Y = Xs ´ B
XE -YE + Ys( ) ´ B

YE

X - Y = Xs ´ B
XE -YE - Ys( ) ´ B

YE

ü 

ý 
ï 

þ 
ï 

XE £ YE

X ´ Y = Xs ´ Ys( ) ´ B
XE +YE

X

Y
=

Xs

Ys

æ 

è 
ç ç 

ö 

ø 
÷ ÷ ´ B

XE -YE

 

 

Examples: 

 

X = 0.3 ´ 102 = 30 

Y = 0.2 ´ 103 = 200 

 

X + Y = (0.3 ´ 102–3 + 0.2) ´ 103 = 0.23 ´ 103 = 230 

X – Y = (0.3 ´ 102–3 – 0.2) ´ 103 = (–0.17) ´ 103 = –170 

X ´ Y = (0.3 ´ 0.2) ´ 102+3 = 0.06 ´ 105 = 6000 

X ¸ Y = (0.3 ¸ 0.2) ´ 102–3 = 1.5 ´ 10–1 = 0.15 
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Figure 10.22  Floating-Point Addition and Subtraction (Z     X ±  Y)
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+

Floating-

Point 

ALU

76

0
10 1 0 1

Control

Small ALU

Big ALU

Sign Exponent Significand Sign Exponent Significand

Exponent 
difference

Shift right

Shift left or right

Rounding hardware

Sign Exponent Significand

Increment or 
decrement

0 10 1

Shift smaller 

number right  

 

Compare 

exponents  

 

Add

Normalize

Round

Block diagram of an arithmetic unit dedicated to floating-point 

addition.



+ Simplified Floating-Point Addition 

Flows



+
Decimal Floating-Point Addition

• Assume 4 decimal digits for significand and 2 decimal 

digits for exponent

Step 1: Align the decimal point of the number that has the smaller 

exponent

Step 2: Add the significand

• check for overflow/underflow of the significant

Step 3: Normalize the sum

• check for overflow/underflow of the exponent after 

normalisation

Step 4: Round the significand

• If the significand does not fit in the space reserved for 

it, it has to be rounded off

Step 5: Normalize it (if need be)



+
A) Decimal Floating-Point Addition

• Step 1: Align the decimal point of the number that has the 

smaller exponent

• Step 2: add the significand

Example: 9.999d x 101 + 1.610d x 10-1

Make 1.610d x 10-1 to 101

-1 + x = 1  x = 2  move 2 to left

 0.0161d x 101

9.9990    x 101

+  0.0161d x 101

-----------------------

10.0151    x 101



+
A) Decimal Floating-Point 

Addition

• Step 3: Normalize the sum

• Step 4: Round the significand (to 4 decimal digits for 

significand)

• Step 5: Normalize it (if need be)

Example: 9.999d x 101 + 1.610d x 10-1

10.0151 x 101
 1.00151 x 102

1.00151 x 102
 1.0015 x 102

No need as its normalized



+
B) Binary Floating-Point 

Addition

• Convert the numbers to binary

• Step 1: Align the decimal point of the number that has the 

smaller exponent

0.5  0.10b x 20
 1.0b x 2-1

Example: 0.5d + (-0.4375d )

-0.4375  -0.0111b x 20
 -1.11b x 2-2

Make 1.11b x 2-2  to 2-1

-2 + x = -1  x = 1  move 1 to left

- 0.111b x 2-1



+
B) Binary Floating-Point Addition

• Step 2: add the significand

• Step 3: Normalize the sum

• Step 4: Round the significand (to 4 decimal digits for significand)

• Step 5: Normalize it (if need be)

1.000 x 2-1

+  -0.111 x 2-1

------------------

Example: 0.5d + (-0.4375d )

0.001 × 2-1
 1.0000 × 2-4

Fits in the 4 decimal digits

No need as its normalized

1.000 x 2-1

− 0.111 x 2-1

-------------------

0.001 × 2-1
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Figure 10.23  Floating-Point Multiplication (Z     X     Y)
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+
Floating-Point Multiplication

 Step 1: Add the exponent of the 2 numbers

 Step 2: Subtract bias

 check for overflow/underflow of the exponent after 

normalization

 Step 3: Multiply the significands

 Step 4: Normalize the product

 Step 5: Round the significand 

 If the significand does not fit in the space reserved for 

it, it has to be rounded off

 Step 6: Set the sign of the product



+
A) Floating-Point Multiplication

(decimal) 85

• Assume 4 decimal digits for significand and 2 decimal digits for 

exponent

• Step 1: Add the exponent of the 2 numbers

• Step 2: Subtract bias

Example: (1.110d x 1010 ) x (9.200d x 10-5)

10 + (-5) = 5

10 + (-5) + 127 = 132



+
A) Floating-Point Multiplication

(decimal) 86

• Assume 4 decimal digits for significand and 2 decimal digits for 

exponent

• Step 1: Add the exponent of the 2 numbers

• Step 2: Subtract bias

• Step 2: Multiply the significands

Example: (1.110d x 1010 ) x (9.200d x 10-5)

10 + (-5) = 5 If biased is considered  10 + (-5) + 127 = 132

9.200

x   1.110

--------------

92000

9200

9200

--------------

10.212000

 10.212000 10.2120 x 105



+A) Floating-Point Multiplication 

(decimal)
87

• Step 3: Normalize the product

• Step 4: Round the significand (4 decimal digits for 
significand)

• Step 5: Normalize it (if need be)

• Step 6: Set the sign of the product

Example: (1.110d x 1010 ) x (9.200d x 10-5)

10.2120 x 105 
 1.02120 x 106 

1.0212 x 106 

Still normalized

+1.0212 x 106 



+B) Floating-Point Multiplication 

(binary)
88

• Assume 4 binary digits for significand and 2 binary digits 

for exponent

• Step 1: Add the exponent of the 2 numbers

• Step 2: Multiply the significands

-1 + (-2) = -3 If biased is considered  -1 + (-2) + 127 = 124

1.110

x   1.000
----------------------

1110000

-> 1.110000

 1.110000 1.110000 x 2-3

Example: (1.000b x 2-1 ) x (-1.110b x 2-2)



+B) Floating-Point Multiplication (binary)

89

• Step 3: Normalize the product

• Step 4: Round the significand (4 binary digits for 
significand)

• Step 5: Normalize it (if need be)

• Step 6: Set the sign of the product

Example: (1.000b x 2-1 ) x (-1.110b x 2-2 )

1.110000 x 2-3 
 already normalized

1.1100 x 2-3

Still normalized

-1.1100b x 2-3
 -7/32 d



+
Precision Considerations

 IEEE standard approaches:

 Round to nearest: 

 The result is rounded to the nearest representable 
number.

 Round toward +∞ :

 The result is rounded up toward plus infinity.

 Round toward -∞: 

 The result is rounded down toward negative infinity.

 Round toward 0: 

 The result is rounded toward zero.

Rounding
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+
Interval Arithmetic

 Minus infinity and rounding 

to plus are useful in 

implementing interval 

arithmetic

 Provides an efficient method for 
monitoring and controlling errors in 
floating-point computations by 
producing two values for each result

 The two values correspond to the 
lower and upper endpoints of an 
interval that contains the true result

 The width of the interval indicates 
the accuracy of the result

 If the endpoints are not 
representable then the interval 
endpoints are rounded down and up 
respectively

 If the range between the upper and 
lower bounds is sufficiently narrow 
then a sufficiently accurate result has 
been obtained

 Round toward zero

 Extra bits are ignored

 Simplest technique

 A consistent bias toward zero in 
the operation

 Serious bias because it affects 
every operation for which 
there are nonzero extra bits

Truncation
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+ Summary

 ALU

 Integer representation

 Sign-magnitude 

representation

 Twos complement 

representation

 Range extension

 Fixed-point representation

 Floating-point representation

 Principles

 IEEE standard for binary 

floating-point representation

 Integer arithmetic

 Negation

 Addition and subtraction

 Multiplication

 Division

 Floating-point arithmetic

 Addition and subtraction

 Multiplication and division

 Precision consideration

 IEEE standard for binary 

floating-point arithmetic

Chapter 10

Computer 

Arithmetic
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