MODULE 2 2 William Stallings |
| Computer Organization
and Architecture
10t Edition

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

Chapter 10

Computer Ar1thmet1c

ken, NJ. All rights reserved

Objectives

m Understand the fundamentals of numerical data
representation and manipulation in digital
computers.

m Master the skill of convertlng between varlous radlx
systems.

m Understand how errors can occur in computations
because of overflow and truncation.

m Understand the fundamental concepts of floating--
point representation.

" 10.1 Arithmetic & Logic Unit (ALU)

m Part of the computer that actually performs arithmetic and
logical operations on data

m All of the other elements of the computer system are there
mainly to bring data into the ALU for it to process and thento
- take the results back out

m Based on the use of simple digital logic devices that can store
binary digits and perform simple Boolean logic operations

f T Ty

.......
N\ \\|‘|",:,'l.
)

\
Y
(Y
\\\\

AN r////-

:w///\

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Control : > ’ o
Signals . > . TAoy

Operand Result
e - S

Figure 10.1 ALU Inputs and Outputs

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

10.2
Integer Representation

Sign-Magnitude Representation
Twos Complement Representation
Range Extension

Fixed-Point Representation

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Numbers: overview

Integer

1

Unsigned
Numbers

T

Fraction

Signed-
Magnitude

Successive
Subtraction

Division-
Remainder

Multiplication

J

Two’s
Complement

One’s
Complement

v |
Unsigned Numbers

- For positive number only.
- Range number =0 to 2"-1

- There is no negative values representation.

If 32 bits long.
Range of numbers that can be represented
" =0to (2%?2-1) =010 4,294,967,295

+
Integer Representation

m In the binary number system arbitrary numbers can be
represented with: | |

m The digits zero and one
m The minus sign (for negative numbers)

. m The period, or radix point (for numbers with a fractional
component)

m For purposes of computer storage and processing we do not

have the benefit of special symbols for the minus sign and
radix point

m Only binary digits(0,1) may be used to represent numbers

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

v | |
Signed Numbers

- Integers as binary values can be positive or negative.

Problem:

How to represent and encode the actual sign of a
number? - - -

. Solution: |
Need code to represent the signs.

- Three signed representations covered:
- Signed Magnitude |
Ones Complement
Twos Complement

Sign-Mégnitudé- Re_preé:ent_atio'n _ -

There are several alternative +All of these alternatives involve treating the
conventions used to r epres ent most significant (leftmost) bit in the word as a

A e sign bit
negative as well as positive .ifthe sign bit is 0 the number is positive
1nteg ers +If the sign bit is 1 the number is negative

Sign-magnitude representation is
the simplest form that employs a
sign bit

*Addition and subtraction require a
consideration of both the signs of the
Drawbacks: numbers and their relative magnitudes to
carry out the required operation

*There are two representations of 0

Because of these drawbacks,
sign-magnitude representation is
rarely used in implementing the
integer portion of the ALU

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 10.1
Characteristics of Twos Complement Representation and Arithmetic
Range —2, ,through2 , -1
Number of Representations One
of Zero

Take the Boolean complement of each bit of the corresponding
Negation positive number, then add 1 to the resulting bit pattern viewed as
an unsigned integer.

Add additional bit positions to the left and fill in with the value

E . f Bit Length ..)]
Xpansion ot bit Leng of the original sign bit.

If two numbers with the same sign (both positive or both
Overflow Rule negative) are added, then overflow occurs if and only if the result
has the opposite sign.

To subtract B from 4, take the twos complement of B and add it

Subtraction Rul
ubtraction Rule 04

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 10.2

Alternative Representations for 4-Bit Integers

Decimal Sign-Magnitude Twos Complement Biased
Representation Representation Representation Representation

+8 — — 1111
+7 0111 0111 1110
+6 0110 0110 1101
+5 0101 0101 1100
+4 0100 0100 1011
+3 0011 0011 1010
+2 0010 0010 1001
+1 0001 0001 1000
+0 0000 0000 0111
-0 1000 — —

-1 1001 1111 0110
—2 1010 1110 0101
-3 1011 1101 0100
4 1100 1100 0011
-5 1101 1011 0010
—6 1110 1010 0001
—7 1111 1001 0000
-8 — 1000 —

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

-128| 64 | 32 | 16 8 4 2 1

(@) An eight-position two's complement value box

-128| 64 | 32 | 16 8 4 2 1
1 0 0 0 0 0 1 1
128 SR iy sl 2D

(b) Convert binary 10000011 to decimal

-128 | 64 | 32 | 16 8 4 2 1
i 0 0 0 1 0 0 0
-120= -128 +8

(c) Convert decimal —120 to binary

Figure 10.2 Use of a Value Box for Conversion
Between Twos Complement Binary and Decimal

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Range Extension
m Range of numbers that can be expressed is extended by -
~ increasing the bit length |

m In sign-magnitude notation this is accomplished by moving the sign
bit to the new leftmost position and fill in with zeros

00000010 00000000 00000010

m This procedure will not work for twos complement negative integers

m Rule is to move the sign bit to the new leftmost position and fill in with
copies of the sign bit

m For positive numbers, fill in with zeros, and for négative numbers, fill in

- with ones -
 Tuisiscalled 111110 11111111 1:111110
sign extension /y

Signbit - gjgn pit Sign bit

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved. extended

Fixed-Point Representation

The radix point (binary
point) is fixed and assumed

to be to the right of the
rightmost digit

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

10.3
Integer Arithmetic

Negation

Addition and Subtraction
Multiplication

Division

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

o
Negation |I
m Twos complement operation . . .

m Take the Boolean complement of each bit of the integer (including the
sign bit)

m Treating the result as an unsigned binary integer, add 1

+18 = 00010010
bitwise complement = 11101101
+ 1

11101110 = -18 (twos complement)

m The negative of the negative of that number is itself:

-18 = 11101110
bitwise complement = 00010001
+ 1
00010010 = +18 (twos complement)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

. | | | |
Negation Special Case 1 (0)

i 5= 00000000

Bitwise complement = 11111111
Add 1 to LSB - o+ 1
Result | | 100000000 (twos complement)

Overflow is ignored, so:

-0=0

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

. | | | |
Negation Special Case 2 (-128)

4128 = 10000000
Bitwise complement = 8B B
Add 1 to LSB | i Ctd
Result | | 10000000 (twos complement)

So:
.(-128)=-128 X
Monitor MSB (sign bit)

It should change during negation

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

1001 = =7
+0101 = 5
1110 = =2

(@) (=7) + (+9)

1100 = -4
+0100 = 4
10000 = O

(0) (-4) +(+4)

0011 = 3 1100 = -4
+0100 = 4 +1111 = -1
0111 = 7 11011 = -5

(€) (+3) + (+4) (@) 4+ (1)
0101 = 5 1001 = —7
+0100 = 4 +1010 = -6

1001 = Overflow

(&) (+3) + (+4)

10011 = Overflow

) (=7) + (-6)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 10.3 Addition of Numbers in Twos Complement Representation

NP

© 201t

-

If two numbers are added, |
‘and they are both positive or
both negative, then overflow
occurs 1if and only if the result
has the opposite sign.

.M

%m .08 OVERFLOW RULE:

A+B

A+ B

A-B

20

<0

<0

A-B

<0

20

20

Overflow in Humankind History

The $7 billion Ariane 5
rocket, launched on June 4,
1996, veered off course 40
seconds after launch, broke
up, and exploded. The failure
was caused when the com-
puter controlling the rocket
overflowed its 16-bit range

and crashed.

The code had been exten-
sively tested on the Ariane 4
rocket. However, the Ariane §
had a faster engine that pro-

duced larger values for the
control computer, leading to
the overflow.

T,

,%
SUBTRACTION RULE

To subtract one number
(subtrahend) from
another (minuend), take
the twos complement
(negation) of the
subtrahend and add it
to the minuend.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

0010 = 2 0101 = 5
+1001L = =7 +1110 = -2
1011 = -5 10011 = 3
(a) M Cea= w010 (b) M S G0
e LI S e (M%)
=9 1.0.0:% == OATEal)
1011 = -5 0101 = 5
+1110 = =2 +0010 = 2
11001 = -7 0111 = 7
(e MR E D e ()] b Ay EsVemls 5t O
S-=12 =0010 Sl 2 e a0 10
=3 11510 S O PESG.
0111 = 7 1010 = -6
+0111 = 7 +1100 = -4
1110 = Overflow 10110 = Overflow
(e) M e =i ¢E)EM —6.= 1010
s e gy s e L L A S-.=! .4 =:0100
— Q< T 3= 1100

Figure 10.4 Subtraction of Numbers in Twos Complement Representation (M — S)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

B Register | A Register .

Complementer

Adder

OF = overflow bit
SW = Switch (select addition or subtraction)

Figure 10.6 Block Diagram of Hardwar e for Addition and Subtraction

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

1011 Multiplicand (11)

X1101 Multiplier (13)
3

1011
VOO0 > Partial products
1011
1011 J
10001111 Product (143)

Figure 10.7 Multiplication of Unsigned Binary Integers

esuccessive refinement

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Hardware implementation:
multiplication & division

Refer to:
Chapter 3 , page 184

LECISIRION Flows of 1st Version

Multiplication SRS
Hardware Multiplication
] (Start)
Algorithm I

Multiplier0 = 1

1. Test Multiplier0 = 0

32-bit multiplicand starts at right half of multiplicand register Multdplier0

R

N

Multiplicand SRR S 1a. Add multiplicand to product and
Shift left |« place the result in Product register
64 bits
4 —
N / ' Multiplier ; ' vy v '
64-bit ALU / Shift right |«
/ L 2. Shift the Multiplicand register left 1 bit
32 hits
Write 3. Shift the Multiplier register right 1 bit
64 bits \ 1

Product register is initialized at 0

No: < 32 repetitions

32nd repetition?

Multiplicand register, product register, ALU are
64-bit wide; multiplier register is 32-bit wide

Yes: 32 repetitions

Example of Multiplication — 4 bits

-Example:2x3:?

Multiplicand B nryjtiplier

m 2x3 = 0010x0011
m Steps:

m la - test LSB for multiplier (0 or 1)
If l1thenP =P+ MC
If 0 then no operation

m 2 - shift MC left
m 3 - shift MP right

m All bits done?

If still <max bit, repeat
If = max bit, stop

(Start)

3

Multiplier0 = 1

1. Test Multiplier0 = 0

MultiplierO

N

la. Add multiplicand to product and
place the result in Product register

A\ 4 \ 4

2. Shift the Multiplicand register left 1 bit

v

3. Shift the Multiplier register right 1 bit

Sl 0: < 4 repetitions

repetition

" Yes: 4 repetitions

2x3 (0010x 0011)

Initial 0000 0010
la:1>P =P + MC

2: Shift MC left 0000 0100
3: Shift MP right 0001

la:1>P =P + MC

2: Shift MC left 0000 1000
3: Shift MP right 0000

la:0=>»no operation

2: Shift MC left 0001 0000
3: Shift MP right 0000

la:0=»no operation
2: Shift MC left 0010 0000
3: Shift MP right 0000

Multiplier Multiplicand

0000 0000
0000 0010

0000 0110

Multiplicand -

Multiply Hardware - Version 2 Mo+ = T

Add Shift and Add

-Bit Add <
o e Control Logic

A
Shift Right

o [AF—»Qu] e [0

Multiplier

1-bit carry register

32-bit Product register
32-bit Multiplier register
32-bit Multiplicand register

(a) Block Diagram

C A 0 M
0 0000 1101 1011 Initial Values

0 1011 1101 1011 Add }_ First

0 0101 1110 1011 Shift Cycle
Second
0 0010 1111 1011 Sshift }- Cycle
0 1101 1111 1011 } Third
0 0110 1111 1011 Shlft Cycle
1 0001 1111 1011 }_ Fourth
0 1000 1111 1011 Shlft Cycle

(b) Example from Figure 9.7 (product in A, Q)

Figure 10.8 Hardware Implementation of
© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved. Unsigned Binary Multiplication

Multiplication
\Version 2

NOUTLPh,h WN -

e Q MC ;C = carry
. 0 0000 0011 0010
. 00010 0011 0010 ;A =A+M
. 000001 0001 0010 ;SR
. 00011 0001 0010 ;A = A+M
. 0 0001 1000 0010 ;SR
. 00000 1100 0010 ;SR
. 0 0000 0110 0010 ;SR

SrarT]

C,A<0
M-<—Multiplicand
Q<«—Multiplier

Count<«—n

Shift right C, A, Q
Count<—Count — 1

END Product

inA,Q

Figure 10.9 Flowchart for Unsigned Binary Multiplication

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

1011

“1101
00001011 1011 ~ 1 © 2°
00000000 1011 ~ 0 © 2°
00101100 1011 ©~ 1 7 2°
01011000 1011 =1~ 2°

10001111

Figure 10.10 Multiplication of Two Unsigned 4-Bit Integers Yielding an 8-Bit
Result

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

1001 (9)

“0011 (3)
00001001 1001 =~ 2°
00010010 1001 ~ 2!

00011011 (27)

1001
“0011

NN)
—
I
I
=
RN

11110010

(=7
(3)

11111001 (=7) 20 = (=7)
(=7
(

11101011

(a) Unsigned integers

(b) Twos complement integers

Figure 10.11 Comparison of Multiplication of Unsigned and Twos
Complement Integers

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

START

A—0,Q_—0

M <—Multiplicand
Q-<—Multiplier
Count«~n

Arithmetic Shift

Right: A, Q, Q_,
Count<—Count — 1

No

Figure 10.12 Booth's Algorithm for Twos Complement Multiplication

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

A 0 0., M
0000 0011 0 0111 Initial Values
1001 0011 0 0111 A<—A - M } First
1100 1001 1 0111 Shift Cycle
| Second
1110 0100 1 0111 Shift } Svele
0101 0100 1 0111 A—A + M } Third
0010 1010 0 0111 Shift Cycle
0001 0101 0 0111 Shift } TomEs
Cycle

Figure 10.13 Example of Booth's Algorithm (7X 3)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

0111
“0011

11111001
0000000
000111

00010101

(@)

el e

N

)

0111
“1101

11111001
0000111
111001

11101011

(@)

I
N O P O —

1)

@ (7) - (3) = (21)

(b) (7) ~ (=3) = (-21)

1001
“0011

00000111
0000000
111001

11101011

)

N R P O~

1)

1001
“1101

00000111
1111001
000111

00010101

)

I
RO O~

N

)

© 7" (3)=(21)

(d) (7))~ (3)=(21)

Figure 10.14 Examples Using Booth's Algorithm

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

00001101 <«—— Quotient
Divisor ——— 1011/10010011 <«—— Dividend

1011V
001110
4/////)' 1011
Partial — OOllll
remainders
1011

100 <«—— Remainder

Figure 10.15 Example of Division of Unsigned Binary Integers

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

1st Version of

Division
Hardware

Divisor starts at left

half of divisor register

32-bit divisor starts at left half of divisor register

—_—

Divisor

Shift right

Quotient register

64 bits

y

A

N
64-bit ALU *

Remainder

Write

64 bits

SN

initialized to be 0

o

Flows of 1st Version
. Division

‘ Start ’

v

1. Subtract the Divisor register from the
Remainder register and place the
result in the Remainder register

Remainder > 0

is

v

Remainder <0

!

Quotient
Shift left

4

2a. Shift the Quotient register to the left,
setting the new rightmost bit to 1

32 bits

Control
test

h

Remainder initialized with dividend at

l right

; L
64-bit wide; quotient register

; -
is 32-bit wide

2b. Restore the original value by adding
the Divisor register to the Remainder
register and place the sum in the
Remainder register. Also shift the
Quotient register to the left, setting the
new least significant bit to 0

A

L

v

3. Shift the Divisor register right 1 bit

Done

l

33rd repetition?

No: <33 rebetitions

Yes: 33 repetitions

Algorithm

Example of Division — 4 bits

m Example:7/2=7

Dividend Quotient z

(DD) i (Q)

1. Subtract the Divisor register from the
Remainder register and place the
result in the Remainder register

m 7/2 =0111/0010

Steps:

Remainder> 0 Remainder <0

m] -Remainder (R)=R-D

, ' '

m 2 -—testnew R (>=0 or <0)

m 2a-IfR>=0 then
R = no operation;
Q = Shift left (add 1 at LSB)

m 2b -If R<0 then
R=D+R
Q = Shift left (add 0 at LSB)

m 3 - shift D right

m All bits done?

If still <¢@max bit + 1), repeat

If = (max bit+1), stop

2a. Shift the Quotient register to the left,
setting the new rightmost bit to 1

2b. Restore the original value by adding
the Divisor register to the Remainder
register and place the sum in the
Remainder register. Also shift the
Quotient register to the left, setting the
new least significant bit to 0

v

3. Shift the Divisor register right 1 bit

4. If not yet 5 =» repeat to
Step 1 (new iteration)

5th repetition?

No: < 5 repetitions

Yes: =5 rebétitions

E I
Xamp . Quotient Divisor (D) Remainder (
(0111 0010) (o)) R)

Initial value 0000 00100000 00000111
1.R=R-D 1110 0111
, 2b.R<0;R=D+R 0000 0111
Q = Shift left (add O at LSB) 0000
3.D = Shift right 0001 0000
1.R=R-D 1111 0111
, 2b.R<0;R=D+R 0000 0111
Q = Shift left (add 0 at LSB) 0000

3.D = Shift right 0000 1000

S Ll
(Q) (D) (R)
0000 0000 1000
1.L.R=R-D 11111111
2b.R<0;R=D+R 00000111
Q = Shift left (add O at LSB) 0000
3. D = Shift right 0000 0100
1.L.R=R-D 00000011
2a.R >=0; R = no operation
Q = Shift left (add 1 at LiSB) 0001
3.D = 0000 0010
1.R= 7/2=3remainderl 0000 0001 1

2a.R. _, . . _____ . __.
Q = Shift left (add 1 at LSB) 0011 3
3. D = Shift right 0000 0001

START

A<—0
M-<—Divisor
Q<«—Dividend
Count<«—n

Shift Left
A, Q

Count<—Count — 1

END Quotient in Q
Remainder in A

Figure 10.16 Flowchart for Unsigned Binary Division

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

A Q
0000 0111 Initial wvalue
0000 1110 Shift
1101 Use twos complement of 0011 for subtraction
1101 Subtract
0000 1110 Restore, set Q, = 0
0001 1100 Shift
1101
1110 Subtract
0001 1100 Restore, set Q, = 0
0011 1000 Shift
1101
0000 1001 Subtract, set Qp = 1
0001 0010 Shift
1101
1110 Subtract
0001 0010 Restore, set Q, = 0

Figure 10.17 Example of Restoring Twos Complement Division (7/3)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

10.4
Floating-Point Representation

Principles

IEEE Standards for Binary-Floating
Point Representation

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

. | | | |
10.4 Floating-Point Representation
Principles

m With a fixed-point notation it is possible to represent a range
of positive and negative integers centered on or near 0

m By assuming a fixed binary or radix point, this format allows
~ the representation of numbers with a fractional component as
well

m Limitations:

m Very large numbers cannot be represented nor can very small .
fractions

" m The fractional part of the quotient in a division of two large
numbers could be lost ; |

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

sign of
significand _ -
<4— 8 hits > 23 bits >
\T biased exponent significand
(a) Format

1.1010001 X 219190 = 0 10010011 10100010000000000000000 = 1.6328125 X 2°°
~1.1010001 X 2%0100 — 7 10010011 10100010000000000000000 = =1.6328125 X 22°
1.1010001 X 2719100 — 0 01101011 10100010000000000000000 = 1.6328125 X 2729
~1.1010001 X 2710100 - 7.091101011 10100010000000000000000 = —1.6328125 X 2720

(b) Examples

Figure 10.18 Typical 32-Bit Floating-Point Format

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

. |
Floating-Point
Significand

m The final portion of the word

m Any floating-point number can be expressed in many ways

The following are equivalent, where the significand is
expressed in binary form: | |
0.110 *2°
110 * 22 .
0.0110 * 2° (unnormalized)

m Normal number (normalized)
= The most significant digit of the significand is nonzero

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+ | [] []
Normalization Process

m Normalization is the process of deleting the zeroes until a non-zero.
value is detected.

0.00234 x 104 = 0.234 x 102> =» 0.234 x 10?
12.0024 x 104 = 0.120024 x 1042 =» 0.120 x 108

A rule of thumb:
moving the radix point to the right = subtract exponent
moving the radix point >

Accurate Arithmetic: Overflow & Underflow]

Expressible Integers

—A—

I S
}umer

5y _p31 0 231 _ 1 Line
(a) Twos Complement Integers If number is
too tiny to be
Negative Positive represented
Underflow Underflow
Negative Expressible Negative essible Positive Positive
Overflow Numbers Numbers Overflow

= (2 = 2—23) % 2128 _2—127 0 2—127 (2 1 2—23) X 2128 Line

(b) Floating-Point Numbers

Figure 10.19 Expressible Numbers in Typical 32-Bit Formats

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

IEEE Standard75¢ 1=

processor to another and to
encourage the development
of sophisticated, numerically
oriented programs

representation is defined

virtually all contemporary @ binary and decimal floating-
processors and arithmetic point representations
COProCcessors

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

IEEE 754-2008

m Defines the following different types of floating-point formats:

m Arithmetic format

m All the mandatory operations defined by the standard are supported
by the format. The format may be used to represent floating-point
operands or results for the operations described in the standard.

m Ba51c format

= This format covers five floating- pomt representat1ons three b1nary
and two decimal, whose encodings are specified by the standard, and
which can be used for arithmetic. At least one of the basic formats 1S
implemented in any conforming implementation.

m Interchange format

= A fully specified, fixed-length binary encoding that allows data
interchange between different platforms and that can be used for
storage.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

sign biased

bit /exponent
|-'(g trailing

>

8bhits 23 hits
(a) binary32 format

sign biased

significand field Single precision

bit /exponent
|T trailing significand field

Double precision

» &
» <

11 bits 52 bits
(b) binary64 format

sign

Y

bit
biased
exponent

trailing significand field

< » &
» <

Y

15 bits
(c) binary128 format

112 bits

Quadruple precision

Figure 10.21 IEEE 754 Formats

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 10.3 IEEE 754 Format Parameters

Parameter Format

binary32 binary64 binary128
Storage width (bits) 32 64 128
Exponent width (bits) 8 11 15
Exponent bias 127 1023 16383
Maximum exponent 127 1023 16383
Minimum exponent 126 -1022 -16382
Approx normal number range 10 44, 10,35 | 10 305, 10,505 | 10 4935, 10, 493,
(base 10)
Trailing significand width (bits)* 23 52 112
Number of exponents 254 2046 32766
Number of fractions 2,3 2c, 2115
Number of values 1.98 ~ 2, 1.99 7 2., 1997 2,56
Smallest positive normal number 2 1 2 i 2 o
Largest positive normal number D= oo 21004 — 2071 216384 ~ 216271
Smallest subnormal magnitude 2 o 2 1074 2 16494

* not including implied bit and not including sign bit

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+ Additional Formats

Extended Precision Formats

Extendable Precision Format

m Provide additional bits in the exponent
(extended range) and in the significand
(extended precision) m Precision and range are defined

: : under user control
m Lessens the chance of a final result that

' has been contaminated by excessive’ m May be used for intermediate
roundoff error : - calculations but the standard
places no constraint or format or

m Lessens the chance of an intermediate e gth
overflow aborting a computation whose
final result would have been

. representable in a basic format

m Affords some of the benefits of a larger
basic format without incurring the time
penalty usually associated with higher
precision

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

v | | |
IEEE 7154 Floating-Point
Standard

= Used in virtually every computer invented since 1980

= [0 pack more bits into the significand, the leading 1
bit of normalized binary number is made implicit
x Original: 1.XXXXXXXX,,, x 2 — (-1)° x F x 2E
= Modified: (-1)5 x (1+Fraction) x 2E
= Significand: 1 plus the fraction

= Single precision: 24 bits
=« Double precision: 53 bits

Normalized Scientific Notation in
IEEE 7154

mIn IEEE standard for normalization (used in
computers), a floating point number is said to be
normalized if there is only a single non-zero before
the radix point.

zero before the radix

there is only a single non-]
oint.

m Example:

123.456 3 normalized 1.23456 X 102

1010.10114 - > normélized l.-OlOlOll X 2011

Biased Notation in IEEE 754

= The desired notation must represent the most
negative exponent as 00...00,,, and the most
positive as 11...11, .

=« IEEE 754 uses a bias of 127 for single precision
(and 1023 for double precision) 5
1aS

» -l 14127, = 01111110, =>In single precision is 127
- +1 - 1+127,, = 1000 0000, => In double precision 1023

ten

A fixed value, called the bias, Is subtracted from the field to get
the true exponent value. -

 An advantage of biased representation Is that nonnegative
floating-point numbers can be treated as iIntegers for
comparison purposes.

3 SINGLE-PRECISION RANGE

o Exponents 00000000 and 11111111 are reserved

o Smallest value

e Exponent: 00000001
= actual exponent =1 - 127 =-126

e Fraction: 000...00 = significand = 1.0
e +1.0Xx 27126 4+1.2 X 1038

o Largest value

o exponent: 11111110 = 22410
= actual exponent = 254 — 127 = +127

e Fraction: 111...11 = significand = 2.0
e +2.0 X 2¥127= 13 4 X 1(0*38

+DOUBLE-PRECISION RANGE

o Exponents 0000...00 and 1111...11 are reserve

o Smallest value

e Exponent: 00000000001
= actual exponent =1 - 1023 =-1022

e Fraction: 000...00 = significand = 1.0
o +1.0 X 2-1022 = +9 9 x 1(—308

o Largest value

 Exponent: 11111111110
= actual exponent = 2046 — 1023 = +1023

e Fraction: 111...11 = significand = 2.0
e +2 0 X 2+1023 ~4+]1.8 X 10+308

. | |
IEEE 754 Conversion

mTo convert a decimal number to single (or
double) precision floating point:
m Step 1: Normalize '
- m Step 2: Determine Sign Bit
= Step 3: Determine exponent
m Step 4: Determine Significand

. | | | |
IEEE 754 Conversion : Example 1

mConvert 10.4, to single precision floating
point.

. Step 1 " Nor mallze For continuous results,

take the 15t pattern

10 = 00001010 before it repeats itself

04x2=08=20
0.8 x2=16=>1
06 x2=12=>1

02x2 =04=>0 | |
0.8x2=16=>1 | _ _

- 0.4=.0110

. | | | |
IEEE 754 Conversion : Example 1

mStep 2: Determine Sign Bit (S)
mBecause (10.4) is positive,S =0 -

= 1.0100110 x 23

mBecause its single precision = bias = 127

mStep 3: Determine exponent

mExponent =3 + bias
=3+ 127
= 1304
- =1000 0010,

IEEE 754 Conversion : Example 1

e Step4: Determine Significand
e Drop the leading 1 of the significand
1.0100110 x 2° =» 0100110

e Then expand (padding) to 23 bits
01001100000000000000000

sign Exponent Significand
0 10000010 01001100000000000000000

Exponent =1000 0010,

IEEE 154 Conversion : EXERCISE

mConvert -0.75 to:
m single precision floating point.
= double precision floating point.

"Cbnverting Binary to Decimal Floating-Poin

Remember: Biased notation =» (-1)sign x (1 + Fraction) x 2 (exponent-bias)

m What decimal number is represented by this single precision fl

Sign (1 bit) | Exponent(8 Significand(23 bit)
1 10000001 | 01000000000000000000000

m Extract the values:

Sign =1 The Fraction =-(1 + 0.25)
Exponent = 10000001b =129d

Significand
=(0x2)+(1x22+(0x23
= Y% =0.25

v |
Math basic ... fraction number!

m .154 = 1/10 + 5/100 + 4/1000 1
1 1 1

1.— +5.— +4,_—
10° 10° 10°

m.1011=1/2+0/4+1/8+1/16

1.1 + ()_i + 1_i +]__i

21 22 : 23 : 24

Table 10.4
IEEE Formats

Format

Format Type

Arithmetic Format

Basic Format

Interchange Format

binary16

binary32

binary64

binary128

X[XX

binary{k}
(k= n~ 32forn>4)

decimal64

decimal128

XX

decimal{k}
(k= n~ 32for n>4)

X[XX XX | X[XX[X]|X

extended precision

extendable precision

X[X| X [X|X]| X | X]|X]|X

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 10.5

Interpretation of IEEE 754 Floating-Point Numbers (page 1 of 3)

Sign Biased exponent Fraction Value
positive zero 0 0 0 0
negative zero 1 0 0 —0
plus infinity 0 all 1s 0 00
Minus infinity 1 all 1s 0 3
quiet NaN Oorl all 1s #0, f"lst ol gqNaN
signaling NaN Oorl all 1s #0; I'BSt bit sNaN
positive normal nonzero 0 0<e< 255 f 2, 1,7(1.)
negative normal nonzero 1 0<e<255 f 2, 157(1.1)
positive subnormal 0 0 f£0 2, 16(0.1)
negative subnormal 1 0 f£0 —2, 1,6(0.1)

(a) binary32 format

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 10.5
Interpretation of IEEE 754 Floating-Point Numbers (page 2 of 3)

Sign Biased exponent Fraction Value
positive zero 0 0 0 0
negative zero 1 0 0 -0
plus infinity 0 all 1s 0 0
Minus infinity 1 all 1s 0 5
quiet NaN Oorl all 1s #0; Eirlst bit gNaN
signaling NaN Oorl all 1s #0; IiBSt bit sNaN
positive normal nonzero 0 0 <e <2047 f 24 1023(1.1)
negative normal nonzero 1 0 < e <2047 f 24 1023(1.)
positive subnormal 0 0 f£0 2, 1025(0.1)
negative subnormal 1 0 f£0 ~24 1022(0.)

(a) binary64 format

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 10.5
Interpretation of IEEE 754 Floating-Point Numbers (page 3 of 3)
Sign Biased exponent Fraction Value

positive zero 0 0 0 0
negative zero 1 0 0 -0
plus infinity 0 all 1s 0 00
minus infinity 1 all 1s 0 3
quiet NaN Oorl all 1s #0; firlst bit gNaN
signaling NaN Oorl all 1s #0; Iirost bit sNaN
positive normal nonzero 0 all 1s f 2, 16383(1.T)
negative normal nonzero 1 all 1s f 2, 15383(1.F)
positive subnormal 0 0 f£0 2, 16383(0.f)
negative subnormal 1 0 f£0 2, 16333(0.f)

(a) binaryl28 format

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

10.5
Floating-Point Arithmetic

Addition and Subtraction
Multiplication and Division
Precision Considerations

IEEE Standard for Binary Floating-
Point Arithmetic

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 10.6 Floating-Point Numbers and Arithmetic Operations

Floating Point Numbers Arithmetic Operations
X=X, BXE)(+Y:(XS'BXE'Y}5+Ys)'BYEIlj
. . X.- . v Y XpEYg

Y=Y, B X_yz(XS B YE_YS) BYEtS
X v=(x,") B
X = aﬁg - pXeYg
v 874

Examples:

X-=037107=30
Y=0.2" 10° =200

X+Y=(03"10,,+0.2) " 10,=0.23 " 10, = 230
A= X {03 71100, ~02) 2105 =1E0.17 10, 24470
X~ ¥Y=(0.3"0.2) " 10,,,=0.06 " 10, = 6000
X.Y=(03,02)"10,,=15" 10,=0.15

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

SUBTRACT

Change
sign of Y

7Y

RETURN

Exponents

7. <X

equal?

Yes

Add

> signed
significands

RETURN

| ” Yes
nereren Z—0 Significand
smaller
exponent
l RETURN
Shift
significand Significand
right overflow?
Shift
No /. significand
Significand right
Increment
exponent
Put other RETURN
number in Z
Report Exponent
overflow overflow?

normalized?

Yes

Round
result

Shift
significand
left

|

Decrement
exponent

Report
underflow

RETURN

Figure 10.22 Floating-Point Addition and Subtraction (Z— X £ Y)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

RETURN

Block diagram of an arithmetic unit dedicated to floating-point

addition.

Fldating- -
Point
ALU

Sign | Exponent Significand Sign | Exponent Significand
v v
N Compare
Small ALU exponents
'
Exponent
difference
v v \ 4 v A v
Co 1) 1 Co l 1) —~(o 1)
- Shift smaller
Shift right number right

v A

v
(o 1)

Increment or
decrement

Shift left or right

I_l

Rounding hardware

v v

A

Sign

Exponent

Significand

Add

Normalize

Round

23 Slmpllfled Floatmg-Pomt Addltlon
Flows |

Exponent range
single precision: -126~127
double precision: -1022~1023

+
Decimal Floating-Point Addition

- Assume 4 decimal digits for 51gn1f1cand and 2 decim
digits for exponent |

Step 1: Align the decimal point of the number that has the smaller
exponent

Step 2: Add the significand
- check for overflow/underflow of the significant
Step 3: Normalize the sum
- check for overflow/underflow of the exponent after
normalisation
Step 4: Round the significand
- If the significand does not fit in the space reserved for
it, it has to be rounded off
Step 5: Normalize it (if need be) -

A) Decimal Floating-Point Addition

Example: 9.999, x 10 + 1.610, x 101

- Step 1: Align the decimal point of the number that has the
smaller exponent

Make 1.610,x 10*to 10*
=2>-1+x=1=»x=2 -2 move 2to left
=> 0.0161, x 10¢

- Step 2: add the significand 9.9990 x 10!
| | © + 0.0161, x 10

10.0151 x 10¢

A) Decimal Floating-Point
Addition
Example: 9.999, x 10! + 1.610, x 10

- Step 3: Normalize the sum

10.0151 x 10 =» 1.00151 x 107

- Step 4: Round the significand (to 4 decimal digits for
significand)

1.00151 x 102 =» 1.0015 x 107
- Step 5: Normalize it (if need be)

No need as its normalized

B) Binary Floating-Point
Addition

§ Example: 0.5, + (-0.4375,)
- Convert the numbers to binary
0.5=>0.10,x2°=>» 1.0, x 21

-0.4375 = -0.0111, x 20 =» -1.11, x 22

- Step 1: Align the decimal point of the number that has the
smaller exponent

Make 1.11, x 22 to 21
=2>-2+x=-1=2x=1-> move lto left
=>-0.111, x 21

B) Binary Floating-Point Addition

Example: 0.5, + (-0.4375,)
» Step 2: add the significand + -0.111 x 2

1.000 x 21 1.000 x 21
— 0.111x 21

- Step 3: Normalize the sum |
0.001 x 21 =» 1.0000 x 2-4

- Step 4: Round the significand (to 4 decimal digits for significand)
Fits in the 4 decimal digits

- Step 5: Normalize it (if need be)
No need as its normalized

MULTIPLY

Add
Exponents

\ 4
Subtract Bias

RETURN
Report
Overflow
Report
Underflow
Multiply
Significands
v
Normalize
v A\ 4
Round RETURN

Figure 10.23 Floating-Point Multiplication (Z— XX Y)
© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

v | | | |
Floating-Point Multiplication

m Step 1: Add the exponent of the 2 numbers
m Step 2: Subtract bias |

m check for overflow/underflow of the exponent after
normalization

= Step 3: Multiply the significands
= Step 4: Normalize the product
m Step 5: Round the significand

m If the significand does not fit in the space reserved for
it, it has to be rounded off

m Step 6: Set the sign of the product

A) Floating-Point Multiplication
(decimal)

Example: (1.110, x 10%9) x (9.2004 x 10-°)

- Assume 4 decimal digits for significand and 2 decimal digits for
exponent | | | |

- Step l: Add the exponent of the 2 numbers
10+ (-5) =5

- Step 2: Subtract bias

10+ (-5) + 127 = 132

A) Floating-Point Multiplication
(dec1mal) Exmple (1.1104 x 10%0) x (9. 200 x 10 5)

- Assume 4 decimal digits for 51gn1flcand and 2 decimal digits for
exponent

- Step 1: Add the exponent of the 2 numbers

10+ (-5) =5 If biased is considered = 10 + (-5) + 127 =132

- Step 2: Subtract bias

- Step 2: Multiply the 51gn1flcands

9.200

x 1.110 = 10.212000 =»10.2120 x 105

10.212000

A) Floating-Point Multiplication

(o LSTeibaa IO =, je: (1,110, x 1010) x (9.200, X 105)

- Step 3: Normalize the product
10.2120 x 10°=>» 1.02120 x 10°

- Step 4: Round the significand (4 decimal digits for
significand)

1.0212 x 10°

- Step 5: Normalize it (if need be)
Still normalized

- Step 6: Set the sign of the product
+1.0212 x 10°

B) Floating-Point Multiplication

(blnar Y) Example: (1.000, x 2-%) x (-1.110, x 2-?)

- Assume 4 binary digits for significand and 2 binary d
for exponent

- Step 1: Add the exponent of the 2 numbers
-1+ (-2) =-3 If biased is considered = -1 + (-2) + 127 =124
- Step 2: Multiply the significainds

1.110
X 1.000

1110000 => 1.110000 =»1.110000 x 23
-> 1.110000

B) Floating-Point Multiplication (bin

Example: (1.000, x 21) x (-1.110, x 22)
- Step 3: Normalize the product
1.110000 x 2-3 =>» already normalized

- Step 4: Round the significand (4 binary digits for
significand)

1.1100 X 23

- Step 5: Normalize it (if need be)
Still normalized

- Step 6: Set the sign of the product

it | | | |
Precision Considerations
Rounding

i IEEE standard approaches:

® Round to nearest:

m The result is rounded to the nearest representable
number.

® Round toward +:

m The result is rounded up toward plus infinity.
® Round toward -«:

m The result is rounded down toward negative infinity.
= Round toward O:

m The result is rounded toward zero.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Interval Arithmetic

m Provides an efficient method for " m Minus jnﬁni'ty and rounding'
monitoring and controlling errors in i
- - to plus are useful in

floating-point computations by ; . :
producing two values for each result . implementing interval

arithmetic

m The two values correspond to the
lower and upper endpoints of an

interval that contains the true result : Trunc ation

m The width of the interval indicates

the accuracy of the result m Round toward zero

m If the endpoints are not
representable then the interval
endpoints are rounded down and up

m Extra bits are ignored

respectively m Simplest technique
m If the range between the upper and _ m A consistent bias toward zero in
lower bounds is sufficiently narrow the operation

then a sufficiently accurate result has

been obtained m Serious bias because it affects

every operation for which
there are nonzero extra bits

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

* Summary

Computer
Arithmetic

Chapter 10

m Integer arithmetic
m ALU

m Integer representation

m Negation

m Addition and subtraction

» Slgn-mangude m Multiplication
representation ;

_ _ m Division
m Twos complement

representation m Floating-point arithmetic

® Range extension m Addition and subtraction

m Fixed-point representation = Multiplication and division

| Floatl_ng-pomt repre_sentatmn = Precision consideration

= Principles m IEEE standard for binary

m IEEE standard for binary floating-point arithmetic
floating-point representation

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

