Instruction Set Architecture
(ISA)

___ @

ADDRESSING MODES

Addressing Mode

opcode address

* Address field = address for operand & result

* Number of bit required to store data (operand & result)

E.g.: field size for an operand = 4 bit, 2*=16 space for address
can be used to store an operand

* How is the address of an operand specified?
Addressing mode —

A technique to identity address to access operands

Address Space: Main Memory (RAM)

» Memory is an ordered sequence o@es Address Address
. (in decimal) (in hex)
The sequence number is called the memory “
2321 FFFFFFFF
address
FFFFFFFE
» Byte addressable memory EFFFEFED
Each byte has a unique address
@
Supported by almost all processors .
» Physical address space .
Determined by the address bus width) 00000002
Pentium has a 32-bit address bus 1 00000001
Physical address space = 4GB = 232 bytes 0 00000000
. . . Address Space is the set of
Itanium with a 64-bit address bus can support memory locations (bytes)

. that can be addressed
Up to 16 Exabytes = 294 bytes of physical address space

Measures of capacity and speed:

4

Kilo- (K) = 1 thousand = 103 and 21°
Mega- (M) = 1 million = 10° and 22°
Giga- (G) = 1 billion = 109 and 23°
Tera- (T) = 1 trillion = 1012 and 24°
Peta- (P) = 1 quadrillion = 10% and 25°
Exa- (E) = 1 quintillion = 108 and 2%°
Zetta- (Z) = 1 sextillion = 102! and 27°
Yotta- (Y) = 1 septillion = 1024 and 28°

Whether a metric refers to a power of ten or a power of
two typically depends upon what is being measured.

Addressing
Modes

A=contents of an address field
in instruction

R=contents of an address field
in instruction that refers to a
register

EA=actual (effective) address of
the location containing the
referenced operand

(X)=contents of memory
location X or register X

(e) Register indirect

[nstruction Instruction
Operand | [] A |
Memaory
e [perand
(a) Immediate (b) Diirect
[mstruction Imstruction
A | | | & |
Memaory
Ciperand |- L
Operand
Bepgisters
(c) Indirect {d) Register
[nstruction [nstruction
| R | L IrR] A |
Memory Memaory
L r
1 —h--!-::l
Cperand —
Registers Registers

(f) Displacement

Addressing Modes

» The most basic addressing modes are:
Immediate
Direct
Indirect
Register
Register Indirect
Displacement (Indexed)

Instruction

Immediate Addressing Operand

» Operand is part of instruction Opcode OperFEjIZCJ
* Operand = A ADD AX J 5H!

o Used to:
define and use constant

Set initial values of variables

Immediate
» No memory reference to fetch data =» so it is FAST

Size of the operand is limited to the size of address field

A = contents of an address field in instruction

Addressing Modes

» The most basic addressing modes are:
Immediate
Direct
Indirect
Register
Register Indirect
Displacement (Indexed)

Direct Addressing

»{ Operand

Address field contains address of operand (5 Direc

Effective Address (EA) = address field of (A)

EA will be either a virtual memory (if present), main memory

address or a register add AX } Count}
e.g. add EAX, A add AX (-1-0_1_13|

Look in memory at address A for operand
Add contents of cell A to register EAX

Single memory reference to access data
No additional calculations to work out effective address
Limited address space

Direct Addressing

data EAR=7611ED18 EBA=VFFD22180 ECA=-HAAAA123 EDX=-00411H822
. ES1=A088008A EDI-AWAAAAAA EBP-HA12FF?4 ESP=8812FF8C

EIP=-8848182D EFL-BA8888246 CF=8 3F=8 ZF=1 0OF=H#

vall byte 10h . . _
arrayl word 2210h, 11h, 12h, 13h Variables are defined in the data

array2 dword 123h, 234h, 345h, 456h section of the program

We use the variable name (label)
to address memory directly

.code
main PROC Assembler computes the offset of
a variable
mov AL, vall | AL = 10h The variable offset is specified
mov BX, arrayl | BX = 2210h directly as part of the instruction
mov ECX; array2| Ecx = 00000123h
call dumpregs
|__E-ﬂ-__|__55__|__43__|__4ﬂ__|__32 |__24__| 16 I__E___l
exit | RAX |
main ENDP | 3OO0 | EAX
IHHHHHHH.'-'EHHHH.'-'EHHHHIHHHHHHHHHHHHHHIHHHHHHHHI AX

[
[
| O OOOOOOOOOOOOOOOOOOOOOOOOOOOooooxc | AH_ | AL |

Direct Addressing

O

| ADD AX, (1011)

AX = 10H
AX = 10H + 28H = 38H

Sem11415 hkm

Addressing Modes

» The most basic addressing modes are:
Immediate
Direct
Indirect
Register
Register Indirect
Displacement (Indexed)

Register Addressing

Similar to direct addressing
BUT, the address field refers to a register

EA=R R = contents of an address field in
instruction that refers to a register

Limited number of registers = compared to memory
locations

Register Addressing

EAX=A08050080 EB{-0000200H ECX-A0003000 EDX-=-A0481H00%
. COde ES]-A088888A EDI-0880A8BHW EBP-B012FF?4 ESP-A012FF8C
EIP=A0481828 FEFL=-88888286 CF=A S5F=A ZF=A O0OF=8

main PROC
mov EAX’ O Instruction
mov EBX, 2000h [R |
mov ECX, 3000h
mov EAX, EBX | EAX = 00002000h L>- [Operand
add EAX, ECX | EAX = 00005000h
Registers
call dumpregs (d) Register

exit
main ENDP

Register Addressing

» Very small address field needed
Shorter instructions
Faster instruction fetch

» No time consuming for memory references =» faster
» Very limited address space

» Multiple registers helps performance
Requires good assembly programming or compiler writing

Addressing Modes

» The most basic addressing modes are:
Immediate
Direct
Indirect
Register
Register Indirect
Displacement (Indexed)

Instruction
[1 A I

Indirect Addressing ey
Operand |-
» Memory cell pointed to by address field contains .
the address of the operand @ (pointer to operand) o

» EA =[A]
Look in A, find address [A] and look there for operand
° e.g.

.data

byteVal BYTE 10h
. code

mov esi,0FFSET byteVal
mov al, [esi] ; AL

10h

Add contents of cell pointed by ESI to register AL

Indirect Addressing

ENZ=-AAAAR234 EBX-AAAABA1A ECX-AA0B0123 EDX=-AA1234%6
ES]1=-AAAABAAA EDI-AAAABBAA EBP-AA18BFF?8 ESP-BA1BFF98
EIP=-AA481842 EFL-AAAAB246 CF=-B SF=-B ZF=1 O0OF=8 AF=A PF=1

Indirect operands are ideal for traversing an array:

.data
arrayl byte 10h, 11h, 12h, 13h Move the content of
array2 word 123h, 234h, 345h, 456h the memory where
array3 dword 123456h, 23456789h the first byte of

is kept into [E38

.code Memory Memory

main PROC address content
mov BL, [array1] BL = 10h

! C1ir:)2 8 | 00404000 10

mov eX farmay2] | ox = o123n e 00404001 | 11
mov EDX, [array3] - h
mov AX, [array2 + 2] | EPX = 00123456 00404002 12
call dumpregs AX = 0234h 00404003 13
exit

main ENDP

**Note that the register in brackets must be incremented by a value that
matches the array type = 1 for byte, 2 - word, 4 - dword.

Addressing Modes

» The most basic addressing modes are:
Immediate
Direct
Indirect
Register
Register Indirect
Displacement (Indexed)

Register Indirect Addressing

Instruction

I [R |

Similar to indirect addressing Memory
EA = [R] L

Operand is in memory cell pointed to by

contents of register R — Operand

Large address space (2")

(e) Register indirect

One fewer memory access than indirect
addressing

Code 1: Register Indirect Addressing

EfAx =A080AA23 4 ECA=A8AAA123 EDK-AA4684804
¢ EBP=A812FF?4 ESP=8B81Z2FF8C
.data EIP=-884A18A3E EFL-BAAAAZ46 CF=A S5F=B8 ZF=1 0F-=8

arrayl byte 10h, 11h, 12h, 13h
array2 word 123h, 234h, 345h, 456h
array3 dword 123456h, 23456789 The address that holds the first

byte of is stored into
.code register =>» must be 32 bit EDI = 00404008

main PROC register
mov ESI, OFFSET arrayl

mov EDI, OFFSET array? , Memory g Memory
Read the register 58], | address content

go to memory address,

ESI = 00404004

O CB:I)‘(’ E:IIEESDII]] %.!etthe value , store in 00404004

mov CX, I A
mov AX, [EDI + 2] 00404006 12

call dumpregs 00404007 13

exit
main ENDP

Code 1: Register Indirect Addressing

Enx=A00AA234 EBA-AAAAAA1A EDx =A84A4864
ES1=AA484884 EDI-=-AA484008 oL —HIBL AL ESP=HA12FF8C
.data EIP=-884A18A3E EFL-BAAAAZ46 CF=A S5F=B8 ZF=1 0F-=8

arrayl byte 10h, 11h, 12h, 13h
array2 word 123h, 234h, 345h, 456h
array3 dword 123456h, 23456789h

ESI = 00404004

code EDI = 00404008

main PROC
mov ESI, OFFSET arrayl
mov EDI, OFFSET array2 :

Read the register [9)I, address content
o to memory address, : — — -

mov BL, [ESI] get the Valu?,, store in 00404008 23 |
mov CX, [ED1] X, [00404009 | 01 |
mov EDX, (ESI) s | p—— I
mov AX, [EDI + 2] 00404010 34
call dumpregs 00404011 02

exit
main ENDP

Code 1: Register Indirect Addressing

Enx=A00AA234 EBX-AAAAAA1A ECK-AHAAA123 EDA-A8484804
ES1=AA484884 EDI-=-AA4848488 EBP=-AA12FF?4 ESP=HA12FF8C

.data EIP=-884A18A3E EFL-BAAAAZ46 CF=A S5F=B8 ZF=1 0F-=8

arrayl byte 10h, 11h, 12h, 13h
array2 word 123h, 234h, 345h, 456h
array3 dword 123456h, 23456789h

ESI = 00404004
EDI = 00404008

.code Memory Memory

mov ESI, OFFSET arrayl
mov EDI, OFFSET array?2

00404008 | 23
00404009 | o1
L e il00404010 || 34 |
mov CX, [EDI]

mov EDX, (ESI) _ 00404011 02
mov AX, [EDI + 2] Read the register I, add a BEEehE

word (OR add 2 bytes), go to
gilllc dumpregs memory address shown, get the

value of second element of

main ENDP ,storein B

Addressing Modes

» The most basic addressing modes are:
Immediate
Direct
Indirect
Register
Register Indirect
Displacement (Indexed)

Displacement Addressing

» Combines direct addressing and register indirect
addressing

« EA=A +[R]
» Address field hold two values

A = base value
R = register that holds displacement
Or ViCe versa

» 3 common displacement addressing technique:
Indexed addressing
Relative addressing
Base register addressing

Indexed Addressing

__ @

Sem11415 hkm

Indexed Addressing: Array Traversal

.data

arrayl byte 10h, 11h, 12h, 13h
array2 word 123h, 234h, 345h, 456h
array3 dword 123456h, 23456789h

EAX=ABBHAAAZ
ES I =AA4846804
EIP=A8481047

EAX=A00006A4
ES I =AA4846804
EIP=A8481047

EAX =ANBBHAAG

EBZ=A008A123
EDI =HH484088
EFL=-001882A2

EBX =-AB0AB234
EDI =HH484088
EFL=-001882A2

EBZ =AAA8AA3 45

ECi=-A80080A4 EDX-00000008
EBP=8812FF?4 E5P=8812FF8C
CF=A 3F=8 ZF=@ 0OF=@

ECi=-AB0080A3 EDX-00000008
EBP=8812FF?4 E5P=8812FF8C
CF=A 3F=8 ZF=@ 0OF=@

ECi=-A80080A2 EDX-0000880608

Code ES1=00484804 EDI =HA484A88 X EBP=0012FF?4 ESP=8BH12FF3C
* EIP=00481847 " EFL=000882H6 CF-A S5F=8 ZF=@ 0OF=Q@
main PROC

nnov'EAO(O EAX=0000000¢8 © EBA=HAAA456 ECH=-00000001 EDX-=-00000000

i ES1=00484804 EDI =HA484A88 X EBP=0012FF?4 ESP=8BH12FF3C

mov ECX, 4 EIP=00481847 " EFL=0008B2H2° CF-A S5F=8 ZF=@ 0OF=0Q

L1: displacement

mov BX, array2[EAX] - - .

add EAX.2 similar to:

call DumpRegs mov BX, [array2 + EAX]

loop L1

P add EAX, 2
exit

main ENDP

Activity : Array Traversal

First, open new ‘Template’ project in VS2010 and copy &
paste source from elearning, i.e. Relative Addressing (
Array Traversal)

Refer to steps described in Lab 1 session
Then proceed with these 2 tasks:

(A) Execute ; [Start Without Debugging |

(B) Debug ; Fio

Activity : Array Traversal

__ @

Sem11415 hkm

Activity : Array Traversal

» 2 tasks:

(B) Debug ; press F10
Open 3 debug windows, i.e.;
o Registers
o Memory 1

o Disassembly
For { Disassembly } window, enable all options in [Viewing Options]

... end of Part 4

__ @

Sem11415 hkm

Summary

MODULE 4:
INSTRUCTION SET ARCHITECTURE

Sem11415 hkm

Instruction Set Design Decisions

9,

Very complex because it affects so many aspects of the computer system

Defines many of the functions performed by the processor

Programmer’s means of controlling the processor

Fundamental design issues:

Operation Instruction : ,

Sem11415 hkm

Instruction Set Design Decisions

Fundamental design issues:

Operation repertoire

« How many and which operations to Instruction Types: Categories

provide and
» how complex operations should be O |
Data processing
o Arithmetic and logic instructions

Data storage (main memory)
© Memory instructions

~ movement of data into or out of
memory locations

Data movement (I1/0)
© I/0 instructions

Control (Program flow control)
o Test and branch instructions

Sem11415 hkm

Instruction Set Design Decisions

Fundamental design issues:

= Most important general categories of data are:
= Numbers — numeric data
« Integer/floating point/decimal
« Limited magnitude of numbers — integer/decimal
« Limit precision — floating point
s Characters — data for text and strings
= ASCII, UNICODE etc.
» Logical Data
= Bits or flags

Data types

The various types of data upon
which operations are performed

Sem11415 hkm

Instruction Set Design Decisions

Fundamental design issues:

Instruction format

Instruction length in bits, x86 Instruction Format
number of addresses, size of m
various fields, etc. m

Jpcode | ModR/M SIB |displacement| Immediate

1 byte, 1 byte, 1,2 or 4 bytes 1,2 or 4 bytes
If required Ifrequired If required If required

1 or 2 bytes

O Opcode: determine the action
OModR/M: Addressing modes register/memory
OSIB: Scale-Index-Base

Sem11415 hkm

Instruction Set Design Decisions

Registers
Number of processor registers
that can be referenced by
instructions and their use
eax
ebx
ecx

edx

esi

edi

esp

ebp

Registers (32-bit)

31 16 15 0 15 87 0
ax —e-ah al
bx ——=bh bl
cX == Ch cl
e =—— dh dl

. General Purpose Registers (GPR)
AX, BX, CX, DX
. Pseudo General Purpose Registers
- Stack: SP (stack pointer), BP (base pointer)
Strings: S| (source index), DI (destination index)
. Special Purpose Registers
IP (instruction pointer) and EFLAGS

Instruction Set Design Decisions

Addressing

The mode or modes by which
the address of an operand is
specified

Addressing
Modes

A=contents of an address field
in instruction

R=contents of an address field
in instruction that refers to a
register

EA=actual (effective) address of
the location containing the
referenced operand

(X)=contents of memory
location X or register X

(2) Inunediate (b) Direct
Insauction Insouction
Memory
Crperasd
[Opecand |
Registars
(c) Indiract {d) Register

Insouaction

Memory

] |

Registers

{e) Register Indirect

L.

Registars

(f) Displacement

Insmraction

Iplicit

|—OI:I

Top of Stack
Fegister

(2) Stack

