Instruction Set Architecture
(ISA)

___ @

REGISTERS

Basic Computer Organization

* Since the 1940's, computers@e 3 classic components:
Processor, called also the CPU (Central Processing Unit)
Memory and Storage Devices

I/0O Devices
» Interconnected with one or more buses
» Bus consists of

Data Bus
| registers |
AddI'GSS Bus 110 110
Processor Device Device
Control Bus (CPU) #1 #2

|ALU CuU cIockl

Sem11415 hkm

Processor (CPU)

¢ Processor consists of
<-Datapath
= ALU
» Registers
<> Control unit

CPU
—l]]
= i

Control Unit

h .
Contral | | | Comtrol Unit

Purposes

Data Path

Processor (CPU)

“ ALU
<> Performs arithmetic
and logic instructions
¢ Control unit (CU)

<> Generates the control
signals required to
execute instructions

** Implementation varies from
one processor to another

C

PU

s g o

4 =

T

=] -
0 & = ®

Control Unit

Ta memary subsysisnme—

<> __wor Je—r

Data Path

Processor (CPU)

In performing 1its task, the processor (CPU) is
partitioned into two logical units:

1) An Execution Unit (EU)
2) A Bus Interface Unit (BIU)

Processor (CPU)

O

O EU is responsible for program execution

O Contains of an Arithmetic Logic Unit (ALU), a Control Unit
(CU) and a number of registers

BIU

O Delivers data and instructions to the EU.

O manage the bus control unit, segment registers and instruction
queue.
O The BIU controls the buses that transfer the data to the EU, to

memory and to external input/output devices, whereas the
segment registers control memory addressing;

Sem11415 hkm

EU : Execution

BIU : Bus Interface Unit

«— Bus

Unit !
|
AX AH AL !
BX BH Bl :
X <H <L | Program Control
DX DH DL :
Sp ; CS
BP ; DS
SI : SS
I : ES
; »| BUS
: [Control
. Unit
I | B U I 1
> CuU 2
Flag register 3 Instruction
4 Queue

Instruction Pointer

(Program Counter)

S

Processor (CPU)

EU and BIU work in parallel, with the BIU keeping one
step ahead.

The EU will notify the BIU when it needs

the data in memory or
an 1/O device or
obtain instruction from the BIU instruction queue.
When EU executes an instruction, BIU will fetch the

next instruction from the memory and insert it into to
instruction queue.

Traditional Registers in x86

. General Purpose Registers (GPR)
- AX, BX, CX, DX
. Pseudo General Purpose Registers

- Stack: SP (stack pointer), BP (base pointer)
- Strings: Sl (source index), DI (destination index)

. Special Purpose Registers
- IP (instruction pointer) and EFLAGS

Sem11415 hkm

GPR usage

. Legacy structure: 16 bits AX * 16 bits

8 bit components:
low and high bytes AR AL

. AX «— Accumulator (arithmetic)

. BX «— Base (memory addressing)
. CX « Counter (loops)

. DX « Data (data manipulation)

Registers (32-bit)

O

General purpose registers (GPR) =» primarily used for
arithmetic and data movement

EAX = Automatically used by MUL and DIV instructions

ECX = Automatically used by processor as a loop counter

avoid usage for
generic
calculations!!!

base pointer register

stack pointer register
~ O

source index register

destination index register

eax
ebx
ecx
edx
esi

edi

esp

ebp

31

Registers (32-bit)
16

. General Purpose Registers (GPR)

- AX, BX, CX, DX

. Pseudo General Purpose Registers
- Stack: SP (stack pointer), BP (base pointer)

~ Strings: Sl (source index), DI (destination index)

. Special Purpose Registers
- IP (instruction pointer) and EFLAGS

Modern extensions (i.e. x64 arch)
. "E” prefix for 32 bit variants — EAX, ESP

. "R” prefix for 64 bit variants — RAX, RSP
. Additional GPRs In 64 bit: R8 —R15

EAX
— T~

AX
\ /
RAX

64-bit Registers (current x64 arch)

Sem11415 hkm

x64 - GPR

64 -bit register Lower 32 bits Lower 16 bits Lower 8 bits
rax eax ax al

rbx ebx bx bl

rcx ecx cx cl

rdx edx dx di

rsi esi Si sil

rdi edi di dil

rbp ebp bp bpl

rsp esp sp spl

Sem11415 hkm

x64 — GPR (additional)

64 -bit register Lower 32 bits Lower 16 bits Lower 8 bits
r8 r8d r8w r8b

r9 rod row rob

r10 r10d r10w r10b

rll rlld rllw rllb

ri2 rl2d rl2w rl2b

ri3 r13d ri3w ri13b

rl4 rldd rldw rl4b

rl5 rl5d rl5w r15hb

Instruction Pointer Register

The instruction pointer register (EIP) holds the address of
the next instruction to be executed.

The EIP register corresponds to the program counter (PC)
register in other architectures.

EIP can be manipulated for certain instructions (e.g. call,
jmp, ret) to branch to a new location

Flags Register

Earlier version (8086/8088) flags were 16 bits.
Later versions flags are 32 bits = EFLAGS.
Flags come in 2 types:

Conditional or status flags =

set or reset by the Execution unit (EU) on the basis of
the results of some arithmetic operation.

Machine control flags =
used to control certain operations of processor.

Flags Register

The EFLAGS register consists of individual binary bits that
control CPU operation or reflect outcome (i.e. output or
status) of some CPU operation.

Some instruction test and manipulate individual processor
flags.

Example :
STC — Set carry flag,
JNZ — Jump Not Zero

EFLAGS

31.. (21120 |19 (18 |17 (16 |15 (14 | 13 12 1110|9876 ([5]4|3]2]|1|0
22
ID [VIP | VIF | AC [VM [RF NT | IOPL [IOPO | O (D |I [T |S|Z A P C
808680888018680188
80286
80386/8986D X
80486SX

PENTIUMPENTIUM 4

Sem11415 hkm

Flags Register : Status flags

O

carry flag (CF)

indicates a carry after addition or a borrow after subtraction,

also indicates error conditions.
parity flag (PF)

is a logic “0” for odd parity and a logic “1” for even parity.
auxiliary carry flag (AF)

important for BCD addition and subtraction;

holds a carry (borrow) after addition (subtraction) between bits position 3
and 4.

= BCD is not used much anymore
zero flag (ZF)

indicates that the result of an arithmetic or logic operation is zero.

Flags Register : Status flags

» sign flag (SF)
o indicates arithmetic sign of the result after an arithmetic operation.
o overflow flag (OF)

o a condition that occurs when signed numbers are added or
subtracted.

o An overflow indicates that the result has exceeded the capacity of the
machine.

Sem11415 hkm

Flags Register : Control flags

used to control certain operations of processor.
E.g.
can cause the CPU to break after every instruction executes,
interrupt when arithmetic overflow is detected,
enter virtual-8086 mode,
enter protected mode.

Extra knowledge = you don’ t necessarily
use this in this course

Flags Register : Control flags

» The control flags are deliberately set or reset with specific
instructions YOU put in your program.

o trap flag ('TF) - used for single stepping through a
program;

o interrupt flag (IF) - used to allow or prohibit the
interruption of a program;

» direction flag (DF) - used with string instructions.

Extra knowledge = you don’ t necessarily
use this in this course

Instruction Set Architecture
(ISA)

___ @

TYPES OF OPERAND

Types of Operand

Assembly language built from two pieces:

add R1, RB\
Opcode Operands
What to do with Where to get
the data data and put

(ALU operation) the results

Types of Operand

= Machine instruction operate on data.
= Most important general categories of data are:
= Numbers — numeric data
= Integer/floating point/decimal
« Limited magnitude of numbers — integer/decimal
= Limit precision — floating point
s Characters — data for text and strings
= ASCII, UNICODE etc.
s Logical Data
= Bits or flags

Example: Types of Operand for

Pentium 4

Type

1 Bit

8 Bits

16 Bits

32 Bits

64 Bits

128 Bits

Bit

Signed integer

Unsigned integer

Binary coded decimal integer

Floating point

x86 Numeric Data Formats

O

- Byte unsigned integer
7 0

- Word unsigned integer

15 0

S -

31 0
] Qutvortwsned g
63 0

Sem11415_hkm

x86 Numeric Data Formats

O

Twos comp - Byte signed integer
7 0
- Word signed integer
15 0
_ Doubleword signed integer

31 0

63 0

Sem11415_hkm

x86 Numeric Data Formats

Single precision
floating point

Sign bit

[Bw] swifema] nere”
Floating point

L 63 .
Signbit Integer bit

[Exponent[| " significana] o0 S redprecsen
floating point

79 63 0

Sem11415_hkm

Type

character

integral

floating
point

Size in
bits

16

32

64

32

64

Format

SigﬁE‘ﬂ {one's
complement])

signed (two's

complerment])
unsigned
SigﬁE‘ﬂ {one's

complerment])

signed (two's

complement)

unsigned

signed (one's

complement)

signed (two's

complerment])

unsigned

SigﬁE‘ﬂ {one's

complement])

signed (two's

complement)

unsigned

|EEE-754 &

IEEE-754

Approximate

+ 3.27 - 104

0 to 6.55 -
104

+ 2.14 - 10°

0to 4.29 -
109

+ 9.22 - 1018

Oto 1.84 -
1019

+ 3.4 - 10%
38

{~7 digits]

+ 1.7 - 10*
308

{~15 digits]

Value range
Exact

-127 to 127

-128 to 127
0 to 255
-32767 to 32767

-32768 to 32767
0 to 65535
-2,147,483,647 10 2,147,483,647
-2,147,483,648 t0 2,147,483,647

0to 4,294,967,295

-9,223,372,036,854,775,807 to
9,223,372,036,854,775,807
-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

0to 18,446,744,073,709,551,615

min subnormal: + 1.401,298,4 - 10°%7
min normal: = 1.175,494,3 - 10738
max: + 3.402,823,4 - 1038

min subnormal: + 4.940,656,458,412 - 10°324
min normal: = 2.225,073,858,507,201,4 - 107308
max: = 1.797,693,134,862,315,7 - 10308

... end of Part 3

O

e Hierarchy of Computer Languages

e General Concepts

e ISA Level

e Elements of Instructions

e Instructions Types

e Instruction Formats
> Numberof Addresses ________________________
» Registers
* Types of Operands

~e Addressing Modes

Part 3

Sem11415 hkm

