
Sem11415_hkm

REGISTERS

Instruction Set Architecture
(ISA)

Sem11415_hkm

Basic Computer Organization

 Since the 1940's, computers have 3 classic components:

 Processor, called also the CPU (Central Processing Unit)

 Memory and Storage Devices

 I/O Devices

 Interconnected with one or more buses

 Bus consists of

 Data Bus

 Address Bus

 Control Bus
Processor

(CPU)
Memory

registers

ALU clock

I/O

Device

#1

I/O

Device

#2

data bus

control bus

address bus

CU

Sem11415_hkm

❖Processor consists of

Datapath

▪ALU

▪Registers

Control unit

Processor (CPU)

Sem11415_hkm

❖ ALU

 Performs arithmetic

and logic instructions

❖ Control unit (CU)

Generates the control

signals required to

execute instructions

❖ Implementation varies from

one processor to another

Processor (CPU)

Sem11415_hkm

In performing its task, the processor (CPU) is

partitioned into two logical units:

1) An Execution Unit (EU)

2) A Bus Interface Unit (BIU)

Processor (CPU)

Sem11415_hkm

EU

 EU is responsible for program execution

 Contains of an Arithmetic Logic Unit (ALU), a Control Unit

(CU) and a number of registers

BIU

 Delivers data and instructions to the EU.

 manage the bus control unit, segment registers and instruction

queue.

 The BIU controls the buses that transfer the data to the EU, to

memory and to external input/output devices, whereas the

segment registers control memory addressing.

Processor (CPU)

Sem11415_hkm

AH AL

BH BL
CH CL

DH DL

SP
BP

SI

DI

AX

CX

DX

BX

EU : Execution
Unit

BIU : Bus Interface Unit

CS

Program Control

DS

SS

ES

ALU
CU

Flag register

1
2

3

Bus
Control
Unit

4

n

Bus

Instruction Pointer

Instruction
Queue

(Program Counter)

Sem11415_hkm

 EU and BIU work in parallel, with the BIU keeping one

step ahead.

 The EU will notify the BIU when it needs

 the data in memory or

 an I/O device or

 obtain instruction from the BIU instruction queue.

 When EU executes an instruction, BIU will fetch the

next instruction from the memory and insert it into to

instruction queue.

Processor (CPU)

Sem11415_hkm

Traditional Registers in x86

● General Purpose Registers (GPR)

– AX, BX, CX, DX

● Pseudo General Purpose Registers

– Stack: SP (stack pointer), BP (base pointer)

– Strings: SI (source index), DI (destination index)

● Special Purpose Registers

– IP (instruction pointer) and EFLAGS

Sem11415_hkm

GPR usage

● Legacy structure: 16 bits

– 8 bit components:

– low and high bytes

● AX ← Accumulator (arithmetic)

● BX ← Base (memory addressing)

● CX ← Counter (loops)

● DX ← Data (data manipulation)

Sem11415_hkm

Registers (32-bit)

EAX

EBX

ECX

EDX

EBP

ESP

ESI

EDI

General purpose registers (GPR) ➔ primarily used for

arithmetic and data movement

EAX ➔ Automatically used by MUL and DIV instructions

base pointer register

stack pointer register

source index register

destination index register

ECX ➔ Automatically used by processor as a loop counter

avoid usage for
generic
calculations!!!

Sem11415_hkm

Registers (32-bit)

esi

edi

esp

ebp

si

di

sp

bp

ax

bx

cx

dx

eax

ebx

ecx

edx

31 16 15 0

bh bl

ch cl

dh dl

ah al

15 8 7 0

Sem11415_hkm

Modern extensions (i.e. x64 arch)

● “E” prefix for 32 bit variants → EAX, ESP

● “R” prefix for 64 bit variants → RAX, RSP

● Additional GPRs in 64 bit: R8 →R15

Sem11415_hkm

64-bit Registers (current x64 arch)

Sem11415_hkm

x64 - GPR

Sem11415_hkm

x64 – GPR (additional)

Sem11415_hkm

Instruction Pointer Register

➢ The instruction pointer register (EIP) holds the address of
the next instruction to be executed.

➢ The EIP register corresponds to the program counter (PC)
register in other architectures.

➢ EIP can be manipulated for certain instructions (e.g. call,
jmp, ret) to branch to a new location

Sem11415_hkm

Flags Register

 Earlier version (8086/8088) flags were 16 bits.

 Later versions flags are 32 bits➔ EFLAGS.

 Flags come in 2 types:

 Conditional or status flags➔

set or reset by the Execution unit (EU) on the basis of
the results of some arithmetic operation.

 Machine control flags➔

used to control certain operations of processor.

Sem11415_hkm

Flags Register

 The EFLAGS register consists of individual binary bits that
control CPU operation or reflect outcome (i.e. output or
status) of some CPU operation.

 Some instruction test and manipulate individual processor
flags.

 Example :

STC – Set carry flag,

JNZ – Jump Not Zero

Sem11415_hkm

20

EFLAGS

31..

22

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID VIP VIF AC VM RF NT IOP1 IOP0 O D I T S Z A P C

808680888018680188

80286

80386/8986DX

80486SX

PENTIUMPENTIUM 4

Sem11415_hkm

Flags Register : Status flags

 carry flag (CF)

 indicates a carry after addition or a borrow after subtraction,

 also indicates error conditions.

 parity flag (PF)

 is a logic “0” for odd parity and a logic “1” for even parity.

 auxiliary carry flag (AF)

 important for BCD addition and subtraction;

 holds a carry (borrow) after addition (subtraction) between bits position 3
and 4.

 ➔ BCD is not used much anymore

 zero flag (ZF)

 indicates that the result of an arithmetic or logic operation is zero.

Sem11415_hkm

Flags Register : Status flags

 sign flag (SF)

 indicates arithmetic sign of the result after an arithmetic operation.

 overflow flag (OF)

 a condition that occurs when signed numbers are added or
subtracted.

 An overflow indicates that the result has exceeded the capacity of the
machine.

Sem11415_hkm

Flags Register : Control flags

 used to control certain operations of processor.

 E.g.

 can cause the CPU to break after every instruction executes,

 interrupt when arithmetic overflow is detected,

 enter virtual-8086 mode,

 enter protected mode.

Extra knowledge ➔ you don’t necessarily

use this in this course

Sem11415_hkm

Flags Register : Control flags

 The control flags are deliberately set or reset with specific
instructions YOU put in your program.

 trap flag (TF) - used for single stepping through a
program;

 interrupt flag (IF) - used to allow or prohibit the
interruption of a program;

 direction flag (DF) - used with string instructions.

Extra knowledge ➔ you don’t necessarily

use this in this course

Sem11415_hkm

TYPES OF OPERA ND

Instruction Set Architecture
(ISA)

Sem11415_hkm

Types of Operand

 Assembly language built from two pieces:

add R1, R3

Opcode
What to do with

the data
(ALU operation)

Operands
Where to get
data and put
the results

Sem11415_hkm

Types of Operand

◼ Machine instruction operate on data.

◼ Most important general categories of data are:

◼ Numbers – numeric data

◼ Integer/floating point/decimal

◼ Limited magnitude of numbers – integer/decimal

◼ Limit precision – floating point

◼ Characters – data for text and strings

◼ ASCII, UNICODE etc.

◼ Logical Data

◼ Bits or flags

Sem11415_hkm

Example: Types of Operand for
Pentium 4

Sem11415_hkm

x86 Numeric Data Formats

Sem11415_hkm

x86 Numeric Data Formats

Word signed integer

Doubleword signed integer

Quadword signed integer

Sem11415_hkm

x86 Numeric Data Formats

Sem11415_hkm

Sem11415_hkm

… end of Part 3

 Hierarchy of Computer Languages

 General Concepts

 ISA Level

 Elements of Instructions

 Instructions Types

 Instruction Formats

 Number of Addresses

 Registers

 Types of Operands

 Addressing Modes

Part 3

