Instruction Set Architecture
(ISA)

O

ISA LEVEL
ELEMENTS OF INSTRUCTIONS
INSTRUCTIONS TYPES
INSTRUCTIONS FORMAT

Sem11415_hkm

Instruction Types: Categories

Data processing
Arithmetic and logic instructions
Data storage (main memory)
Memory instructions

movement of data into or out of
memory locations

Data movement (I/0)
I/0 instructions

Control (Program flow control)
Test and branch instructions

Instruction Types:

Examples of Data Movement and Data Storage

(i/o instructions & mem instructions)

Table 10.8 x86 Operation Types (with Examples of Typical Operations)

Instruction Description
Data Movement

MOV Move operand, between registers or between register and memory.

PUSH Push operand onto stack.

PUSHA Push all registers on stack,

MOVSX Move byte, word, dword, sign extended. Moves a byte to a word or aword to a
doubleword with twos-complement sign extension.

LEA Load effective address. Loads the offset of the source operand, rather than its value to
the destination operand.

XLAT Table lookup translation. Replaces a byte in AL with a byte from a user-coded
translation table. When XLAT 1s executed, AL should have an unsigned index
to the table. XLAT changes the contents of AL from the table index to the table
entry.

IN,OUT Input, output operand from /O space.

Instruction Types:

Examples of Data Processing
(arithmetic & logic instructions)

Table 10.8 x86 Operation Types (with Examples of Typical Operations)

Instruction Description
Arithmetic

ADD Add operands.

sUB subtract operands.

MUL Unsigned integer multuplication, with byte, word, or double word operands, and word,
doubleword, or quadword result.

IDIV signed divide.

Logical

AND AND operands.

BTS Bit test and set. Operates on a it field operand. The instruction copies the current
value of a hat to flag CF and sets the oniginal bit to 1.

BSF Bit scan forward. Scans a word or doubleword for a 1-bit and stores the number of the
first 1-bat into a register.

sHL/SHR Shift logical left or nght,

SALSAR Shift arithmetic left or night.

Instruction Types:

Examples of Control
(test & branch instructions)

Table 10.8 x86 Operation Types (with Examples of Typical Operations)

Instruction Description
Control Transfer

JMP Unconditional jump.

CALL Transfer control to another location. Before transfer, the address of the mstruction
following the CALL 15 placed on the stack.

JE/JZ Jump if equalfzero.

LOOPE/LOOPZL Loops if equal/zero, This 1s a conditional jump using a value stored 1n register
ECX. The instruction first decrements ECX before testing ECX for the branch
condition,

INT/INTO Interrupt/Interrupt if overflow. Transfer control to an interrupt service routine.

Instruction Set Architecture
(ISA)

O

ISA LEVEL
ELEMENTS OF INSTRUCTIONS
INSTRUCTIONS TYPES
INSTRUCTIONS FORMAT

Sem11415_hkm

Instruction Formats

Layout of bits in an instruction
Includes opcode
Includes (implicit or explicit) operand(s)

Usually more than one instruction format in an instruction
set

Instruction Formats

OPCODE

(@)

OPCODE

ADDRESS

OPCODE

ADDRESSH1

ADDRESS2

(b)

Four common instruction formats:
(a) Zero-address instruction. (b) One-address instruction

(c)

OPCODE

ADDR1

ADDR2

ADDRS

(d)

(¢) Two-address instruction. (d) Three-address instruction.

PDP-8 Instruction Format

MMemory Reference Instructions

------------------ | ST O = e Displacement |
0 2 3 4 5 L

. Inp ut/Cutput Instroctions .

T I 0] Davice | Opcode |
= 3 3 g ? t

Register Reference Instructions
Gmoup L Microstmctions

1 I L O | CLA|] CLL | CMA | CML | RAR | RAL | BEW | LAC |
0 L 2 3 4 5 a T 2 g La LL
~Gmup 2 Microl et mctions _
[T T T [| CLA| SMA| 524 | SHL | Res | 0sR | HLT | 0 |
i L 2 3 4 5) T 2 g La LL

Cmoup 3 Moo stctions .
L L L L L JCLATME . Onpeof the simplest instruction designs for

\
\
1

0 L 3 3 4
a general-purpose computer was for.

E:é- _ F.D;; Elgfh Eﬁ;ﬁ;; Fixed length instruction format.
CLa = Clear Accumulator « The PDP-8 uses 12-bit instructions and
CLL = Clear Link .
CWA = CobMplement Accurmuolator operates on 12-bit words.
CML = CoMplement Link . Th . inel] it
RAR — Rotate Accomultator Richt ere is a single general-purpose register,
RAL = Rntat:Accumulatancg X the accumulator.
E'Ew - Ej.t: EwﬂP - I.'FJ'%EI_F — I.'FJI-III.Il-'II'i.I. "{‘I-H-'I.ILIII. [=L | ol

PDP-10 Instruction Format

The PDP-10 has a 36-bit word length
and a 36-bit instruction length.
» Fixed length instruction format.

Sem11415_hkm

PDP-11 Instruction Format

I |Opeode] Source |Destination]| 2| Opeode R Source) Opeoade Offet
4 i i T e i 4 &
4 Orpeade FP| Destination| =5 Orpende Destination | & Orpende i
& [1y i 12 4
7 Oponde R & Orpende U Opopde| Source |[Destination Memaouy A dvess
13 e 16 ’_4 [i 1
/ « PDP-11 was designed to provide a
0] Ompeode Source Miemory A diirem powerful and flexible instruction set
7 . 16 within the constraints of a 16-bit
minicomputer.
11 Orpon de Source Memovy A ddvess
5 p r » Variable length instruction format.
« PDP-11 employs a set of eight 16-bit
12 Opco de Destinafion Memory A d dress general-purpose registers.
10 6 16
13 | Opeode] Source | Destination Memory Address 1 Memory Address 2
4 [[16 1

Mumbers below felds indicate bit length

somree and Destination each contain a 3-bit addressing made feld and a 3-bit vegister number
FP indicates one of four Aoating-poeint registers
Rindicates one of the general-purpese registers
CC iz the condition code Field

x86 Instruction Format

O

Oorl Dorl Dorl Oorl hytes
Instruction| Seg ¢ ﬂ[ﬂ:‘l'ﬂllﬂ Adtlr:ss
fix override SIEE SHEE
pre override | overrile
" tt‘
i Y
. 0,123 ord h}tes*", lor2 Dorl Dorl 0.1,.2,ord 012ord
Instruction prefixes Opeode Mod R/M SlB Displacement Immediate
- - “‘ %
- - o : I‘ 1i
- - ' L] 1
- - i "_l I-‘
Mod | Reg/Opcode | RIM Scale | Index Base

x86 Instruction Format

Opcode | ModR/M SIB displacement| Immediate
1 byte, 1 byte, 1,2 or 4 bytes 1,2 or 4 bytes
lor2b
or = bytes If required Ifrequired If required If required

O Opcode: determine the action

OModR/M: Addressing modes register/memory

O SIB: Scale-Index-Base
O Not all fields are present in all instr.

QIf present, must be 1n the above order

x86 Instruction Format
)

ModR/M

Mod | Reg # R/M

2 bits 3 bits 3 bits

O Mod=00,
— First operand a register, specified by Reg #

—Second operand in memory; address stored
1n a register numbered by R/M.
»That 1s, Memory[Reg[R/M]]
— Exceptions:
»R/M=100 (SP): SIB needed
»R/M=101 (BP): disp32 needed

x86 Instruction Format
O

Assembly Name Reg #
EAX 000

EBX 001

ECX 010

EDX 011

ESP 100

EDP 101

ESI 110

EDI 111

Sem11415_hkm

x86 Instruction Format

OMod=01. same as Mod 00 with 8-bit
displacement.

—Second operand: Memory|disp8+Reg|R/M].
— Exception: SIB needed when R/M=100

OMod=10, same as Mod 01 with 32-bit
displacement

OMod=11

— Second operand i1s also a register, numbered
by R/M.

x86 Instruction Format
)

SIB

Scale| Index Base

2 bits 3 bits 3 bits

O Specify how a memory address 1s calculated

scale

0 Address=Reg|base| + Reg[Index|*2
O Exceptions:
— SP cannot be an index, and

— BP cannot be a base.

Sem11415_hkm

x86 Instruction Format

Example: Add Instructions

O The first operand 1s the destination.
— Can be register or memory

O The second operand is the source
— Can be register or memory

O The two operands cannot be both memory.

O Action: dest += source

x86 Instruction Format
7
- immd8 AL += immdS8
| 05 | immd32 EAX += immd32
[00 [modRM| =~ Rm8+=r8
[01 [modRM| = Rm32+=132
[08 [modRM] 132 4=rm32
-E. immd8 RmS8 += immd8
o1 i oz
Rm32 +=immd32

Sem11415_hkm

x86: add instruction
)

Opcode Mnemonic Operand(s)

00 add mema8,reg8

01 add mem16,reg16
mem32,reg32

02 add reg8,reg8

02 add reg8,mems8

03 add reg16,reg16
reg32,req32

03 add reg16,mem16
reg32,mema32

Sem11415_hkm

x86: add instruction

&

Opcode Mnemonic Operand(s)

04 add AL,imm8
05 add AX,imm16
EAX,imm32
80 add reg8,imm8
80 add mem8,imm8

Sem11415_hkm

ARM Instruction Formats

A
31 3029 28 27 262524232221 201918171615 14131211109 8 7 6 5 4 3 2 1 0

data processing

immediateshift | <ond |0 0 0| opcode |5 Rn Rd shift amount | shift| 0 Rm
datfeg:::::::mg cond [0 0 0| opcode |5 Rn Rd Rs 0| shift| 1 Rm
data Er:ﬂ;;igntg cond 0 0 1| opcode |5 Rn Rd rotate immediate
g [cond [0 1 ofp[ulB[W[L] Rn Rd immediate
reg[';aef’fﬁé’;ﬁ cond |0 1 1|P[u|B[W|L| Rn Rd |shift amount|shift| 0| Rm
oo | cond |10 ofp[uls[wW[L] register list
ranchvbraneh ™ cond [1 0 1]L 24-bit offset

» S = For data processing instructions, updates condition codes

» S = For load/store multiple instructions, execution restricted to supervisor mode
» P, U, W = distinguish between different types of addressing_mode

» B = Unsigned byte (B==1) or word (B==0) access

» L= Forload/store instructions, Load (L==1) or Store (L==0)

» L= For branch instructions, is return address stored in link register

X86 vs. ARM

» Fixed instruction formats of ARM
Simple decoding logic
Waste of memory space
Limited addressing modes

» Variable length formats of x86
Difficult to decode; sequential decoding
Compact machine codes
Accommodate versatile addressing modes

Types of ISA (CISC vs RISC)

» Complex instruction set computer (CISC)
Many instructions (several hundreds)

An instruction takes many cycles to execute
Example: Intel, AMD

» Reduced instruction set computer (RISC)
Small set of instructions (typically 32)

Simple instructions, each executes in one clock cycle —
REALLY? Well, almost.

Effective use of pipelining
Example: ARM, MIPS

Instruction Set Architecture
(ISA)

O

NUMBER OF ADDRESSES

Sem11415_hkm

Number of Addresses

SUB Y,B = 2-address instruction
SUB Y,A,B = 3-address instruction

Number of addresses per instructions is one way to describe
processor architecture

Number of addresses refers to how many operand can an
instruction take.

The more the addresses — fewer number of instructions needed

The more the addresses — will require a longer instruction format

The more the addresses — the slower the fetch and execution

The more the addresses — will require a more complex processor
With multiple-address instructions, there are commonly multiple
general registers that can be used

Register references are faster than memory references

Design trade-offs : choosing the number of addresses per
instruction

Programs to Execute Y =

A-B

C+(DxE)

Instruction Comment

MOVE Y. A Y «— A

SUB Y.B Y—Y-B

MOVE T,D T—D

MPY T.E T—TxE

ADD T.C T<—T+C

DIV Y. T Y—Y=T

Instruction Comment

SUB Y.A B Y<—A-B
MPY T.D.E T—DxE
ADD T.T.C T—T+C
DIV Y. Y. T Y—Y=T

(a) Three-address instructions

2 addresses = 6 instructions

(b) Two-address mnstructions

Instruction Comment
LOAD D AC <D
MPY E AC < AC xE
ADD C AC—AC+C
STOR Y Y «— AC
LOAD A AC <— A

SUB B AC<— AC-B
DIV Y AC—AC=+Y
STOR Y Y «— AC

1 address - 8 instructions

(c) One-address instructions

3 addresses = 4 instructions

0 address - 10 instructions

PUSH C
PUSHD
PUSH E
MUL
ADD
PUSHB
PUSH A
SUB
DIV
POPY

The 3 Address Instruction

» 3 addresses
Operand 1, Operand 2, Result (Destination)

May be a forth address - next instruction (usually implicit,

obtained from PC)

Example below: T=temporary location used to store intermediate

results
Not common in use
Needs very long words to hold everything

Instruction

SUB Y.A.B

A_B MPY T.D.E

Programs to Execute Y - — ‘ g&D fo E, CT‘
C+(Dx E) Y,

— 3 addresses = 4 instructions

(a) Three-address instructions

Comment

Y—A-B
T—DxE
T—T+C
Y—Y-=T

The 3 Address Instruction

Memory CPU add, Res, Op1, Op2 (Res « Op2 + Op1)
[I
Opl1Addr:| Opf : :
Op2Addr:| Op2 T é_‘ |
I I
LA :
ResAddr:| Res € |
: [|
I I
I I
: Program 24:
NextiAddr:| Nexti <€—— counter |
Where to find |
I

|
: next instruction

Instruction format

Bits: 8 24 24 24
add ResAddr Op1Addr Op2Addr
Which Where to ks S e O
operation put result Where to find operands

Q Address of next instruction kept in a processor state register
the - PC (Except for explicit Branches/Jumps)

Sem11415_hkm

The 2 Address Instruction

2 addresses
One address doubles as operand and result(destination)

Reduces length of instruction and space requirements
Requires some extra work

Temporary storage to hold some results

Done to avoid altering the operand value

Instruction Comment
MOVE Y. A YA
SUB Y.B Y—Y-B
MOVE T.D T—D
A_R MPY T.E T—TxE
i 7 A - ADD T.C T<—T+C
Programs to Execute Y = C+(DxE) DIV Y.T Ve Y=T

2 addresses = 6 instructions

(b) Two-address instructions

The 2 Address Instruction

Memory CPU

Op1Addr:| Op1

Op2Addr: |Op2.Res [«

Program

Nextidddr:| MNexti - counter

I Where to find
: next instruction |

* Be aware of the difference between address, OplAddr, and
data stored at that address, Op1.

* Result overwrites operand 2, Op2, with result, Res

* This format needs only 2 addresses in the instruction but there
IS less choice in placing data

1 Address Instructions

1 address
Implicit second address
Usually a register (accumulator)

Common on early machines

A-B
C+(DxE)

Programs to Execute Y =

Instruction Comment
LOAD D AC <D
MPY E AC < AC xE
ADD C AC—AC+C
STOR Y Y «— AC
LOAD A AC <— A

SUB B AC<— AC-B
DIV Y AC—AC=+Y
STOR Y Y «— AC

1 address = 8 instructions

1 Address Instructions

Memory CPU add Op1 (Acc « Acc + Op1)
T T T T |
: ! |
We now need Opladdr:) Qp1 | |
instructions to | :
load and store | | Where to find
operands: - ; : operand2, and
. , /where to put result
LDA OpAddr i i | Accumulator |
| |
STA OpAddr , Program
P NextiAddr:| Nexti |« : Cofmer 24:
: Where to find :
| _nextinstruction |
_________ nstruction tformat
Bits: 8 24
id Op1Add
'hich Wher l
operatior per
[J

Special CPU register, the accumulator, supplies 1 operand and
stores result

One memory address used for other operand

The O Address Instruction

O (zero) addresses
All addresses implicit
Uses a stack

There are two Opcodes with one operand:

PUSH op, POP op

A-B
C+(DxE)

Programs to Execute Y =

0 address - 10 instructions

PUSH C
PUSHD
PUSH E
MUL
ADD
PUSH B
PUSH A
SUB
DIV
POPY

The O Address Instruction

Instruction formats
Memory CPU nush f':i 11 (TOS:« [';i'. 1)
oo TRESRGAIET SN RS o G TS E |
I //I Bits: 8 24
Op1Addr:| Op1 | v ¥ L | S
I |] al ;‘nu‘r.’ “7:\\";@., 1
| s ' Operation Result
1 SOS |
: etc. \} :
: | add (TOS « TOS + SOS)
| | Bits: 8
I Stack l e
| | = At !
NextiAddr:| Nexti |&—— Program (54 ! S ... |
| counter Which operation
- |
: Where to find . Where to find operands,
B ORGBSIMGUON, . o | and where to put result

(on the stack)

* Uses a push down stack in CPU

* Arithmetic uses stack for both operands. The result replaces them
on the TOS

* Computer must have a 1 address instruction to push and pop
operands to and from the stack

Programs to Execute Y =

A-B

C+(DxE)

Instruction Comment

MOVE Y. A Y «— A

SUB Y.B Y—Y-B

MOVE T,D T—D

MPY T.E T—TxE

ADD T.C T<—T+C

DIV Y. T Y—Y=T

Instruction Comment

SUB Y.A B Y<—A-B
MPY T.D.E T—DxE
ADD T.T.C T—T+C
DIV Y. Y. T Y—Y=T

(a) Three-address instructions

2 addresses = 6 instructions

(b) Two-address mnstructions

Instruction Comment
LOAD D AC <D
MPY E AC < AC xE
ADD C AC—AC+C
STOR Y Y «— AC
LOAD A AC <— A

SUB B AC<— AC-B
DIV Y AC—AC=+Y
STOR Y Y «— AC

1 address - 8 instructions

(c) One-address instructions

3 addresses = 4 instructions

0 address - 10 instructions

PUSH C
PUSHD
PUSH E
MUL
ADD
PUSHB
PUSH A
SUB
DIV
POPY

How Many Addresses

* Number of addresses per instruction is a basic design decision
* More addresses

More complex (powerful?) instructions

Fewer instructions per program

More registers

Inter-register operations are quicker

* Fewer addresses

Less complex (powerful?) instructions

More instructions per program

Faster fetch/execution of instructions

... end of Part 2

O

e Hierarchy of Computer Languages

e General Concepts
e ISA Level
e Elements of Instructions

. » Instructions Types i
i e Instruction Formats i Pa I‘t 2
i e Number of Addresses i
e Registers
e Types of Operands

e Addressing Modes

Sem11415_hkm

