
Module 4

Instruction Set Architecture
(ISA)

REFERENCE:

WILLIAM STALLINGS – COMPUTER ORGANIZATION & ARCHITECTURE

KIP IRVINE – ASSEMBLY LANGUAGE FOR INTEL-BASED COMPUTERS

Sem11415_hkm

Content Overview

 Hierarchy of Computer Languages

 General Concepts

 ISA Level

 Elements of Instructions

 Instructions Types

 Instruction Formats

 Number of Addresses

 Registers

 Types of Operands

 Addressing Modes

Sem11415_hkm

Content Overview

 Hierarchy of Computer Languages

 General Concepts

 ISA Level

 Elements of Instructions

 Instructions Types

 Instruction Formats

 Number of Addresses

 Registers

 Types of Operands

 Addressing Modes

Part 1

Sem11415_hkm

MACHINE -, ASSEMBLY -, AND HIGH -
LEVEL LANGUAGES

Hierarchy of
Computer Languages

Sem11415_hkm

Some Important Questions to Ask

 What is Assembly Language?

 Why Learn Assembly Language?

 What is Machine Language?

 How is Assembly related to Machine Language?

 What is an Assembler?

 How is Assembly related to High-Level Language?

 Is Assembly Language portable?

Sem11415_hkm

A Hierarchy of Languages

Sem11415_hkm

Assembly and Machine Language

 Machine language

 Native to a processor: executed directly by hardware

 Instructions consist of binary code: 1 s and 0 s

 Assembly language

 A programming language that uses symbolic names to represent operations,
registers and memory locations.

 Slightly higher-level language

 Readability of instructions is better than machine language

 One-to-one correspondence with machine language instructions

Sem11415_hkm

Compiler and Assembler

 Assemblers translate assembly
to machine code

 Compilers translate high-level
programs to machine code

 Either directly, or

 Indirectly via an assembler

Sem11415_hkm

Advantages of High-Level Languages

 Program development is faster

 High-level statements: fewer instructions to code

 Program maintenance is easier

 For the same above reasons

 Programs are portable

 Contain few machine-dependent details

 Can be used with little or no modifications on different machines

 Compiler translates to the target machine language

 However, Assembly language programs are not portable

Sem11415_hkm

Why Learn Assembly Language?

 Accessibility to system hardware

 Assembly Language is useful for implementing system software

 Also useful for small embedded system applications

 Space and Time efficiency

 Understanding sources of program inefficiency

 Tuning program performance

 Writing compact code

 Writing assembly programs gives the computer designer the needed
deep understanding of the instruction set and how to design one

 To be able to write compilers for HLLs, we need to be expert with the
machine language. Assembly programming provides this experience

Sem11415_hkm

BASIC MICROCOMPUTER DESIGN

INSTRUCTION EXECUTION CYCLE

READING FROM MEMORY

HOW PROGRAMS RUN

General Concepts

Sem11415_hkm

Basic Microcomputer Design

 clock synchronizes CPU operations

 control unit (CU) coordinates sequence of execution steps

 ALU performs arithmetic and bitwise processing

Central Processor Unit

(CPU)

Memory Storage

Unit

registers

ALU clock

I/O

Device

#1

I/O

Device

#2

data bus

control bus

address bus

CU

Sem11415_hkm

Clock

 synchronizes all CPU and BUS operations

 machine (clock) cycle measures time of a single operation

 clock is used to trigger events

one cycle

1

0

Sem11415_hkm

Instruction Execution Cycle

 Fetch

 Decode

 Fetch operands

 Execute

 Store output

Sem11415_hkm

Reading from Memory

 Multiple machine cycles are required
when reading from memory,
because it responds much more
slowly than the CPU.

 The steps are:

 Cycle 1:

 address placed on address bus

 Cycle 2:

 Read Line (RD) set low

 Cycle 3:

 CPU waits one cycle for
memory to respond

 Cycle 4:

 Read Line (RD) goes to 1,
indicating that the data is on
the data bus

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Data

Address

CLK

ADDR

RD

DATA

Sem11415_hkm

Assembling, Linking, and Running
Programs

 Assemble-Link-Execute Cycle

 Listing File

 Map File

Sem11415_hkm

Assemble-Link Execute Cycle

 The following diagram describes the steps from creating a source
program through executing the compiled program.

 If the source code is modified, Steps 2 through 4 must be
repeated.

Source

File

Object

File

Listing

File

Link

Library

Executable

File

Map

File

Output

Step 1: text editor

Step 2:

assembler

Step 3:

linker

Step 4:

OS loader

Sem11415_hkm

Listing File

 Use it to see how your program is compiled

 Contains

 source code

 addresses

 object code (machine language)

 segment names

 symbols (variables, procedures, and constants)

 Example: addSub.lst

AddSubLst.txt

Sem11415_hkm

Listing File

Sem11415_hkm

Listing File

• 32-bit addresses
• indicate the relative byte

distance of each statement
from the beginning of the
program’s code area

Sem11415_hkm

Listing File

• contain no executable
instructions

• … directives,

Sem11415_hkm

Listing File

• assembly language instructions, each 5
bytes long

• the hexadecimal values in the second
column, such as B8 00010000 are
the actual instruction bytes.

Sem11415_hkm

Map File

 Information about each program
segment:

 starting address

 ending address

 size

 segment type

 Example:

 addSub.map

AddSubMap.txt

Sem11415_hkm

ISA LEVEL

ELEMENTS OF INSTRUCTIONS

INSTRUCTIONS TYPES

INSTRUCTIONS FORMAT

Instruction Set Architecture
(ISA)

Sem11415_hkm

Instruction Set Architecture (ISA) Level

 ISA Level defines the interface between the compilers
(high level language) and the hardware. It is the
language that both them understand

Sem11415_hkm

What is an Instruction Set?

 The complete collection of instructions that are understood
by a CPU

 Known also as Machine Code/Machine Instruction

 Binary representation

 Usually represented by assembly codes

 Programmer becomes aware of registers,
memory structure, data types supported by machine and
the functioning of ALU

Sem11415_hkm

What is an Instruction Set?

 An example of instruction format (size 16-bit)

 Above instruction must fit with register of 16-bit size

Sem11415_hkm

Example of some ISA

Sem11415_hkm

ISA LEVEL

ELEMENTS OF INSTRUCTIONS

INSTRUCTIONS TYPES

INSTRUCTIONS FORMAT

Instruction Set Architecture
(ISA)

Sem11415_hkm

Elements of an Instruction

 Operation code (Opcode)
 Specifies the operation to be performed (MOV, ADD, SUB etc).
 Specified as binary code know as OPCODE

 Source Operand reference
 One or more source operands (input for the operation)

 Result (Destination) Operand reference
 Operation produce a result (output for the operation)
 Sometimes the result is an action, like JMP target

 Next Instruction Reference
 Tells processor where to fetch the next instruction after the execution

of current instruction is completed

MOV AX, BX

Opcode

Source
operand

Destination
Operand

.... invisible !!!

Sem11415_hkm

Elements of an Instruction

 Source and result operands could be:

 Main memory or virtual memory – addresses is supplied
for instruction references

 CPU registers (processor registers) – One or more
registers that can be referenced by instructions

 Immediate – the value of the operand is contained in the
field in the instruction executed.

 I/O device – instruction specifies the I/O module and device
for the operation

Sem11415_hkm

Elements of an Instruction

Operand: memory

Operand: register

Operand: immediate value

Operand: from I/O

Go to the address location that holds
TOTAL and get the value

Next instruction is where
TARGET is located = 0003

Sem11415_hkm

Instruction Representation

 In machine code:

 each instruction has a unique bit pattern (a sequence of bits)

 An instruction is divided into fields and with multiple formats, e.g.;

 During instruction execution:

 An instruction is read into the Instruction Register (IR) in the
processor

 The processor then extract the data and perform the required
operation

Sem11415_hkm

Instruction Representation

 For better understanding, a symbolic representation is used

 Opcodes represented as mnemonics, indicates the operations

 e.g. ADD, SUB, LOAD

 Difficult to deal in binary representation of machine instructions

What the
processor see

What the
programmer see

Sem11415_hkm

Translating Languages

 A single instructions in a High Level Language like C may
require more than 1 instruction in Assembly language.

 Example : Total = Total + stuff; // in C lang.

 add the value stored in Total to the value stored in stuff and
put result in Total.

 In assembly language (assuming Total and stuff has been
declared):

 Load a register with the contents of memory (for Total)

 Add the contents of memory (for stuff) to the register

 Store the content of the register to memory location (for Total)

Sem11415_hkm

Translating Languages

English: D is assigned the sum of A times B plus 10.

High-Level Language: D = A * B + 10

Intel Assembly Language:

mov eax, A

mul B

add eax, 10

mov D, eax

Intel Machine Code:

A1 00404000

F7 25 00404004

83 C0 0A

A3 00404008

A statement in a high-level language is translated

typically into several machine-level instructions

Sem11415_hkm

Mapping Between Assembly Language
and High Level Language (HLL)

 Translating HLL programs to machine language programs
is NOT a one-to-one mapping

 A HLL instruction (usually called a statement) will be
translated to one or more machine language instructions

 Example of mapping between some C instructions and x86
assembly language:

Sem11415_hkm

Assembly vs. Machine Code

Sem11415_hkm

e.g. MOV actual format

 actual MOV instructions defined in 80x86 consists of 32
different machine instructions (or ‘opcode’)

 next slide will show just part of it.

Sem11415_hkm

e.g. MOV actual format

Sem11415_hkm

e.g. MOV actual format

Sem11415_hkm

e.g. MOV actual format

Sem11415_hkm

… end of Part 1

 Hierarchy of Computer Languages

 General Concepts

 ISA Level

 Elements of Instructions

 Instructions Types

 Instruction Formats

 Number of Addresses

 Registers

 Types of Operands

 Addressing Modes

Part 1

