Module 4
Instruction Set Architecture

(ISA)

REFERENCE:
WILLIAM STALLINGS - COMPUTER ORGANIZATION & ARCHITECTURE
KIP IRVINE = ASSEMBLY LANGUAGE FOR INTEL-BASED COMPUTERS

Content Overview

O

e Hierarchy of Computer Languages

e General Concepts

o ISA Level

e Elements of Instructions
e Instructions Types

e Instruction Formats

e Number of Addresses

e Registers

e Types of Operands

e Addressing Modes

Sem11415 hkm

Content Overview

' Part 1

e Instruction Formats
e Number of Addresses
e Registers

e Types of Operands

e Addressing Modes

Sem11415 hkm

Hierarchy of
Computer Languages

___ @

MACHINE-, ASSEMBLY-, AND HIGH-
LEVEL LANGUAGES

Sem11415 hkm

Some Important Questions to Ask

What is Assembly Language?

Why Learn Assembly Language?

What is Machine Language?

How is Assembly related to Machine Language?
What is an Assembler?

How is Assembly related to High-Level Language?
Is Assembly Language portable?

A Hierarchy of Languages

Application programs

High-level languages
Machine-independent High-level languages

Machine-specific Low-level languages
Assembly language

Machine language

Microprogram control

Sem11415 hkm

Assembly and Machine Language

» Machine language
Native to a processor: executed directly by hardware
Instructions consist of binary code: 1sand 0 s

» Assembly language

A programming language that uses symbolic names to represent operations,
registers and memory locations.

Slightly higher-level language
Readability of instructions is better than machine language
One-to-one correspondence with machine language instructions

Compiler and Assembler

High-level languages » Assemblers translate assembly

\ to machine code
== » Compilers translate high-level

Assembly language | programs to machine code
| Either directly, or
Indirectly via an assembler

Machine language

Advantages of High-Level Languages

» Program development is faster

High-level statements: fewer instructions to code
* Program maintenance is easier

For the same above reasons
» Programs are portable

Contain few machine-dependent details
Can be used with little or no modifications on different machines

Compiler translates to the target machine language
However, Assembly language programs_are not portable

Why Learn Assembly Language?

Accessibility to system hardware
Assembly Language is useful for implementing system software
Also useful for small embedded system applications
Space and Time efficiency
Understanding sources of program inefficiency
Tuning program performance

Writing compact code

Writing assembly programs gives the computer designer the needed
deep understanding of the instruction set and how to design one

To be able to write compilers for HLLs, we need to be expert with the
machine language. Assembly programming provides this experience

General Concepts

___ @

BASIC MICROCOMPUTER DESIGN
INSTRUCTION EXECUTION CYCLE
READING FROM MEMORY
HOW PROGRAMS RUN

Sem11415 hkm

Basic Microcomputer Design

data bus

| registers |
Central Processor Unit Memory Storage Vo ”Q
. Device Device
(CPU) Unit #1 49

| ALU | Cu | clock |

L Ccontrolbus _ _|_ _ _ J _______ ‘ ______ l _———

address bus

clock synchronizes CPU operations
control unit (CU) coordinates sequence of execution steps
ALU performs arithmetic and bitwise processing

one cycle

Sem11415 hkm

Instruction Execution Cycle

Fetch

Decode

Fetch operands
Execute

Store output

Figure 2-2 Simplified Pentium CPU Block Diagram.

Wermrory

CCOE

DATA

Ciata bus

Address bus

I

Code cache

L

Instruction pointer

Instruction decoder

[]

F
k J

h—— ——-

M

¥

Control unit

v

Registers

ALL

Floating-point unit

Data cache

.
i

Reading from Memory

Multiple machine cycles are required
when reading from memory,
because it responds much more
slowly than the CPU.

The steps are:
Cycle 1:
address placed on address bus
Cycle 2:
Read Line (RD) set low
Cycle 3:
CPU waits one cycle for
memory to respond

Cycle 4:
Read Line (RD) goes to 1,

indicating that the data is on
the data bus

CLK

ADDR

RD

Cycle 1

—/_

Address

DATA

Data

Assembling, Linking, and Running
Programs

» Assemble-Link-Execute Cycle
» Listing File
» Map File

Assemble-Link Execute Cycle

Link

Step 2: Step 3: Step 4:

Library
Source | assembler q Object linker Executable | OS loader

File File > Eile —» Output
T Listing Map

Step 1: text editor File File

The following diagram describes the steps from creating a source
program through executing the compiled program.

If the source code is modified, Steps 2 through 4 must be
repeated.

Listing File

O

» Use it to see how your program is compiled

» Contains
source code
addresses
object code (machine language)
segment names
symbols (variables, procedures, and constants)

e Example: addSub.Ist

AddSubLst.txt

Listing File

O

Microsoft (R) Macro Assembler Version 9.00.30729.01 05/07/09
16:43:07
Add and Subtract (AddSub.asm) Page 1 - 1

TITLE Add and Subtract (AddSub.asm)

; This program adds and subtracts 32-bit integers.

INCLUDE Irvine32.inc
C .NOLIST
Cc .LIST

00000000 .code
00000000 main PROC

10000h
50000h
30000h

00000000 BB 00010000 mov eax,10000h
00000005 05 00040000 add eax,40000h
0000000A 2D 00020000 sub eax,20000h
0000000F EB 00000000 E call DumpRegs

0000001B main ENDP
END main

Structures and Unions:
Name Size
Offset

Sem11415 hkm

Listing File

O

Microsoft (R) Macroc Assembler WV~

16:43:07 { » 32-bit addresses
Add and Subtract (addsub. * indicate the relative byte
TITLE Add and Subtract distance of each statement

from the beginning of the
L program’s code area

¢ .nouzst 7 7
c.nist 7 7
00000000 s .code
00000000 = main PROC
o
00000000 : BB 00010000 mov eax,10000h : EAX = 10000h
00000005 05 00040000 add eax,40000h : EAX = 50000h
0000000A: 2D 00020000 sub eax,20000h : EAX = 30000h
0000000F: EB8 00000000 E call DumpRegs
0000001B main ENDP
END main
Structures and Unions:
Name Size
Offset Type

Sem11415 hkm

Listing File

O

Microsoft (R) Macro Assembler Version 9/

1;43 : g? N I « contain no executable
A Subtract Sub. . .

an THC (asm) instructions

TITLE Add and Subtract (Ad¢ o directives,

; This program adds and subtracts 32-bit

-

INCLUDE Irvine32.inc S T

ke
=
-
-
-
-
Pt
-

C .NOLIST
C .LIST 7
66060660 eode yea
00000000 main PROC
00000000 B8 00010000 mov eax,10000h : EAX = 10000h
00000005 05 00040000 add eax,40000h : EAX = 50000h
go00000A 2D 00020000 sub eax,20000h : EAX = 30000h
0000000F EB8 00000000 E call DumpRegs
0000001B main ENDP
END main

Structures and Unions:

Name Size

Offset Type

Sem11415 hkm

Microsoft (R) Macro Assembler
16:43:07

Add and Subtract (AddSub:

TITLE Add and Subtract

INCLUDE Irvinel2.inc

Sem11415 hkm

; This program adds and subtra

e
-
-
-
-
-
-
-
e
-

Listing File

« assembly language instructions, each 5
bytes long

 the hexadecimal values in the second
column, such as B8 00010000 are
the actual instruction bytes.

Neee

pre -
o -
- -
Pias
-

c .worzsr 7 T
c.LzsTr T T
00000000 " code
00000000 e main PROC
00000000 BB 00010000 mov eax, 10000h ; EAX = 10000h
00000005 05 00040000 add eax, 40000h ; EAX = 50000h
0o00000A{ 2D 00020000 sub eax, 20000h ; EAX = 30000h
0CO000C00F: EB 00000000 E call DumpRegs
0000001B main ENDP
END main
Structures and Unions:
Name Size
Offset Type

Start Stop Length Name
0e00AH @P6E2H @B6E3H _TEXT
@@6E4H GOBFDH @021AH _DATA
@e908H ©28FFH 82000H STACK
02900H @2AFFH @0200H _BSS

Origin Group
@e6E:® DGROUP

Program entry point at 0000:0000

Sem11415 hkm

AddSubMap.txt

Instruction Set Architecture
(ISA)

___ @

ISA LEVEL
ELEMENTS OF INSTRUCTIONS
INSTRUCTIONS TYPES
INSTRUCTIONS FORMAT

Sem11415 hkm

Instruction Set Architecture (ISA) Level

FORTRAN 90

program C program
FORTRAN 90 C program
program compiled compiled
"to ISA program vto ISA program
Software
SAleEel @020z |eeeesessseessessssmassnse
Hardware

Y

ISA program executed
by microprogram or hardware

Hardware

» ISA Level defines the interface between the compilers
(high level language) and the hardware. It is the
language that both them understand

What is an Instruction Set?

The complete collection of instructions that are understood
by a CPU

Known also as Machine Code/Machine Instruction
Binary representation
Usually represented by assembly codes

Programmer becomes aware of registers,
memory structure, data types supported by machine and
the functioning of ALU

What is an Instruction Set?

» An example of instruction format (size 16-bit)

4 bits 6 bits 6 bits
Opcode Operand Reference Operand Reference
< 16 bits >

» Above instruction must fit with register of 16-bit size

Example of some ISA

Va
------------------------- M GBS0 150%6 VAN PPCH0
(introduced 1975) (introdoced 1979 (imtrodoced 1951) (imtrodoced 19%3)
0k (iR
7 {h 15 & 7 0 11 0 :
A | AN - o {
13 B | Dam _|BX | s4bit |
6 special | 1X registers (O |12 generml_ flaating point
purpose | SP | o | purpuoss Rll | regisbers
registers " regisiers AT | 3l
| stus Address gp FP ik 1]
[ana _|BP o 32 le kit !
T [count T g LT [) II]
| 2hyies _| U — rogisters | — EE..:E;.]
| ofmamn | bl) | fl-l.-gm::g |
[memory | cs [[rsw | 5
CEpECilY] - —
| a2%-1 Memuory | pg i) il
— scpmenl — I I
| registers _ | 55 | Ibyies _ | 0
foweer Es ol main B M".'h_: thea _5':' B
_ |I1L:rm 140 — memoary | | FZ-bit special |
sl b= — = — ILrrosg
1P LEP-HII..I.l_'r' 212_] i cters
status I
T Pllcrre than 30 I a
| 2¥bvies | 0 iisbrctions 5 35 btes i
| ofmain | of mzin
ERE RNy " merwsry
- L:apﬂll.:ﬂ_'_:'.l — 23 g - capacily - 92
Morc than 120 Muore than 250
inirsclgns insiric lions

Sem11415 hkm

Instruction Set Architecture
(ISA)

___ @

ISA LEVEL
ELEMENTS OF INSTRUCTIONS
INSTRUCTIONS TYPES
INSTRUCTIONS FORMAT

Sem11415 hkm

Elements of an Instruction

» Operation code (Opcode)
Specifies the operation to be performed (MOV, ADD, SU s

Specified as binary code know as OPCODE operand

» Source Operand reference MOV A
One or more source operands (input for the operation)

Destination

Operand

» Result (Destination) Operand reference
Operation produce a result (output for the operation)
Sometimes the result is an action, like JMP target

Next Instruction Reference

Tells processor where to fetch the next instruction after the execution
of current instruction is completed

... Invisible "1

Elements of an Instruction

Source and result operands could be:

Main memory or virtual memory — addresses is supplied
for instruction references

CPU registers (processor registers) — One or more
registers that can be referenced by instructions

Immediate — the value of the operand is contained in the
field in the instruction executed.

I/0O device — instruction specifies the I/O module and device
for the operation

Elements of an Instruction

@ Go to the address location that holds
TOTAL and get the value

Operand: memory

Current Ins.: 0000 Operand: register
Next Ins.: 0001

Operand: immediate value

Operand: from I/0O

Current Ins.: 0007
Next Ins.f 0003}

Next instruction is where
TARGET is located = 0003

Sem11415 hkm

Instruction Representation

» In machine code:

each instruction has a unique bit pattern (a sequence of bits)
An instruction is divided into fields and with multiple formats, e.g.;

4 bits

6 bits

6 bits

Opcode

Operand Reference

Operand Reference

<

16 bits

» During instruction execution:

An instruction is read into the Instruction Register (IR) in the

processor

>

The processor then extract the data and perform the required

operation

Instruction Representation

» For better understanding, a symbolic representation is used

Opcodes represented as mnemonics, indicates the operations
e.g. ADD, SUB, LOAD
Difficult to deal in binary representation of machine instructions

Instruction type Opcode Symbolic representation Description

Data transfer 00001010 LOAD MG, M(X) Transfer contents of memory location X to register MCQ

What the What the
Processor see programmer see

Translating Languages

» A single instructions in a High Level Language like C may
require more than 1 instruction in Assembly language.
» Example : Total = Total + stuff; // in C lang.

add the value stored in Total to the value stored in stuff and
put result in Total.

» In assembly language (assuming Total and stuff has been
declared):

Load a register with the contents of memory (for Total)
Add the contents of memory (for stuff) to the register
Store the content of the register to memory location (for Total)

Translating Languages
A

English: D is assigned the sum of A times B plus 10.

d

High-Level Language: D=A*B + 10

A statement in a high-level language is translated
typically into several machine-level instructions

Intel Assembly Language: Intel Machine Code:
mov eax, A Al 00404000

mul B E) | F7 2500404004
add eax, 10 83 CO OA

mov D, eax A3 00404008

Sem11415 hkm

Mapping Between Assembly Language
and High Level Language (HLL)

Translating HLL programs to machine language programs
is NOT a one-to-one mapping

A HLL instruction (usually called a statement) will be
translated to one or more machine language instructions

Example of mapping between some C instructions and x86
assembly language:

C " hssembly Languege

A=45 MO 3 5

BN 2, 3
h=a+5 ADD ax, o
PO b a

goto LBL JMF LEL

Assembly vs. Machine Code

Instruction Address |Machine Code |Assembly Instruction

0005
000s
OO0E
O00E
0077
00174
0017
00TA,
iyle
00 TE
0020
0023
0026
0023
002 A
O0Z2E
0031
0033

Es 0001
Es 0002
Es 0003
Es 0004
EBE 0001
B9 0001
EA 0007
sB C3
sSB C1
sB C2
83 C0 01
83 C0 02
03 C3
03 1
03 06 0000
23 B8 01
2B C3
05 1234

MAOY AR,
MAOY AR, 2
MACY A, 3
MAOY A 4
MDY B, 1
MO 3, 1
MAOY D, 1
MAOY AR BX
MO AR X
MAOY AR DX
ADD A1
ADD A, 2
ADD A BX
ADD A TR
ADD A
=SB AX 1
SUE AX, BX
ADD Ax, 12340

e.g. MOV actual format

actual MOV instructions defined in 80x86 consists of 32
different machine instructions (or ‘opcode’)

next slide will show just part of it.

e.g. MOV actual format

/Y

Number Timing Timing Timing
Mnemonic Operand(s) Flags affected of 386 486 Pentium
mov AL, immB none BO 2 2 1 1
mov CL, imm8 none Bl 2 2 1 1
mov DL, imm8 none B2 2 2 1 1
mov BL, imm8 none B3 2 2 1 1
mov AH, imm8 none B4 2 2 1 1
mov CH, imm8 none Bb 2 2 1 1
mov DH, imm8 none B6 2 2 1 1
mov BH, imm#g none B7 2 2 1 1

e.g. MOV actual format
7\
Number Timing Timing Timing
Mnemonic Operand(s) Flags affected Opcode of Bytes 386 486 Pentium
mov AX, imm1lB none EB 3 2 1 1
EAX, imm32 B
mov CX, imm16 none ES 3 2 1 1
ECX, imm32 5
mov DX, imm16 none BA 3 2 1 1
EDX, imm32 b
mov BX, imm16 none BB 3 2 1 1
EBX, imm32 B
mov SP, imm16 none BC 3 2 1 1
ESP, imm32 5
mov BP, imm16 none ED 3 2 1 1
EFB, imm32 5

e.g. MOV actual format
7\
Number Timing Timing Timing

Mnemonic Operand(s) Flags affected Opcode of Bytes 386 486 Pentium
MoV AL, direct none AD 3] 4 1 1
mov AX, direct none Al =) 4 1 1

EAX, direct
mov reg8,mem8 none BA 2+ 4 1 1
mov regl6 memil6 none 8B 2+ 4 1 1

regd2 mema32
mov memB reg8 none 88 2+ 2 1 1
mov mem16 reglf none 89 2+ 2 1 1

mem32 reg32
MoV direct AL none AZ 3] 2 1 1
MoV direct, AX none A3 3] 2 1 1

direct, EAX

... end of Part 1

» ISA Level E Pa I‘t 1

e Instruction Formats
e Number of Addresses
e Registers

e Types of Operands

e Addressing Modes

Sem11415 hkm

