
Module 3:
Introduction to

Assembly Language Programming

Assembly code …

Instructions

• Assembled into machine code by assembler

• Executed at runtime by the CPU after the program has been
loaded into memory and started.

• Member of the Intel IA-32 instruction set

• Parts :

– A) Label (optional)

– B) Mnemonic (required)

– C) Operand (required)

– D) Comment (optional)

Dr Mazleena Salleh Module 5 – Main Memory 3

Example:
Standard Format for Instruction

Dr Mazleena Salleh Module 5 – Main Memory 4

Label Mnemonics Operands ; Comments

Instruction 1 mov eax, 1000h ; eax=1000h

Instruction 2 target: add ebx, 4000h ;ebx=ebx+4000h

A) Labels

• Act as place marker

– marks the address (offset) of code and data

• Follow identifier rules (refer slide # 18)

• Data label

– must be unique

– example: myVar WORD 100
mov ax, myVar

• Code label

– target of jump and loop instructions

– example: target:

Dr Mazleena Salleh Module 5 – Main Memory 5

target :
mov ax,bx
…
jmp target

B) Mnemonics and Operands

• Instruction Mnemonics is a short word that identifies the
operation carried out by an instruction (useful name).

• Examples :

– MOV move (assign one value to another)

– ADD add two values

– SUB subtract one value from another

– MUL multiply two values

– INC increment

– DEC decrement

– JMP jump to a new location

– CALL call a procedure

Dr Mazleena Salleh Module 5 – Main Memory 6

C) Operands

• An assembly language can have between zero to three
operands

• Types of operand :

– constant (immediate value) eg 96, 2005h, 101011010b

– constant expression eg 2+4

– register eg EAX, EBX, AX, AH

– memory (data label) eg count

Dr Mazleena Salleh Module 5 – Main Memory 7

.. C) Operands

• Examples assembly language instructions with various
number of operands :

• No operand

stc ; set carry flag

• one operand

inc ax ; add 1 to AX

• two operands

mov count, bx ; move BX to count

Dr Mazleena Salleh Programming 1 8

D) Comments

• Comments are good.
– explain the program's purpose
– when it was written, and by whom
– revision information
– tricky coding techniques
– application-specific explanations

• Single-line comments
– begin with semicolon (;)
– Ex : ; add BX to AX

• Multi-line comments
– begin with COMMENT directive and a programmer-chosen

character
– end with the same programmer-chosen character

Dr Mazleena Salleh Programming 1 9

Example: Multi-line Comments

COMMENT !
This is a comment
This line is also a comment
Everything here are comments but after
exclamation character it is no longer a comment

!

Dr Mazleena Salleh Programming 1 10

Example: Program Template

TITLE Budget Calculator (budget.asm)
; Program Description:
; Author:
; Date Created:
; Last Modification Date:

INCLUDE Irvine32.inc
.data
(insert variables here)
val1 dword 10000h

:

Dr Mazleena Salleh Programming 1 11

:
.code
main PROC
(insert executable instructions here)

mov ax,@data ; initialize DS

exit ; exit to o/s
main ENDP
(insert additional procedures here)

END main

Example:
Adding and Subtracting Integers

Dr Mazleena Salleh Programming 1 12

… Adding and Subtracting Integers

Dr Mazleena Salleh Programming 1 13

Example Output

• Program output, showing registers and flags:

Dr Mazleena Salleh Programming 1 14

EAX=00030000 EBX=7FFDF000 ECX=00000101 EDX=FFFFFFFF

ESI=00000000 EDI=00000000 EBP=0012FFF0 ESP=0012FFC4

EIP=00401024 EFL=00000206 CF=0 SF=0 ZF=0 OF=0

Integer Constants

• Optional leading ‘+’ or ‘–’ sign

• Binary, decimal, hexadecimal, or octal digits

• Common radix characters:

▪ h – hexadecimal

▪ d – decimal

▪ b – binary

▪ r – encoded real

▪ q/o - octal

• Examples: 30d, 06Ah, 42, 1101b, 33q, 22o

• Hexadecimal number that beginning with letter must have a
leading zero to prevent the assembler interpreting it as an
identifier : 0A5h

Dr Mazleena Salleh Programming 1 15

If no radix - decimal

Character and String Constants

• Enclose character in single or double quotes

– 'A', "x"

– ASCII character = 1 byte

• Enclose strings in single or double quotes

– "ABC"

– 'xyz'

– Each character occupies a single byte

• Embedded quotes:

– 'Say "Goodnight," Gracie'

Dr Mazleena Salleh Module 5 – Main Memory 16

Reserved Words

• Reserved words cannot be used as identifiers

– Instruction mnemonics (MOVE, ADD, MUL)

– Directives (INCLUDE)

– type attributes (BYTE, WORD)

– Operators (+, -)

– predefined symbols (@data)

• Directives

– command understood by the assembler

– not part of Intel instruction set

– case insensitive

– E.g. WORD, DWORD, .data, .DATA

Dr Mazleena Salleh Module 5 – Main Memory 17

Identifiers

• Identifiers (programmer-chosen name)

– May contain 1-247 characters, including digits

– Not case-sensitive (by default)

– first character must be a letter (A..Z,a..z), _, @, ? or $

– Subsequent character may also be a digit

– Identifier cannot be the same as assembler reserved word.

– common sense – create identifier names that easy to understand

• Avoid using single @ sign as first character.

• Ex : Valid identifier

Var1, Count, MAX, $first, open_file, _12345, @@myfile,_main

Dr Mazleena Salleh Module 5 – Main Memory 18

Directives

• Commands that are recognized / understood and acted upon by the
assembler

– Not part of the Intel instruction set

– Used to declare code, data areas, select memory model, declare
procedures, etc.

– Not case sensitive (.data, .DATA, .Data – they are the same)

• Different assemblers have different directives

– NASM != MASM, for example

• Examples :

– .DATA – identify area of a program that contains variables

– .CODE – identify area of a program that contains instructions

– PROC – identify beginning of a procedure. name PROC

Dr Mazleena Salleh Module 5 – Main Memory 19

Intrinsic Data Types

• BYTE, SBYTE (signed-byte)

– 8-bit unsigned integer; 8-bit signed integer

• WORD, SWORD

– 16-bit unsigned & signed integer

• DWORD, SDWORD

– 32-bit unsigned & signed integer

• QWORD (quadword)

– 64-bit integer

• TBYTE (tenbyte)

– 80-bit integer

Dr Mazleena Salleh Programming 1 20

Data Definition Statement

• A data definition statement sets aside storage in memory for a
variable.

• May optionally assign a name (label) to the data

• Syntax:

[name] directive initializer [,initializer] . . .

Nilai1 BYTE 34

Nilai2 BYTE ‘A’

Nilai3 BYTE 27h, 4Ch, 6Ah

• All initializers become binary data in memory

example : 00110010b, 32h, 50d

Dr Mazleena Salleh Programming 1 21

Defining BYTE and SBYTE Data (8 bits)

• Each of the following defines a single byte of storage:

Dr Mazleena Salleh Programming 1 22

Example: Sequences of Bytes

Dr Mazleena Salleh Programming 1 23

Example: Defining Bytes

list1 BYTE 10h,20h,30h,40h

list2 BYTE 10h,20h,30h,40h

BYTE 50h,60h,70h,80h

BYTE 81h,82h,83h,84h

list3 BYTE ?,32,41h,00100010b

list4 BYTE 0Ah,20h,‘A’,22h

Dr Mazleena Salleh Programming 1 24

Defining Strings

• A string is implemented as an array of characters
– For convenience, it is usually enclosed in quotation marks

– It usually has a null byte at the end

• Examples:

Dr Mazleena Salleh Programming 1 25

… Defining Strings

• End-of-line character sequence:

– 0Dh = carriage return

– 0Ah = line feed

• Eg

Dr Mazleena Salleh Programming 1 26

Using the DUP (duplicate) Operator

• Use DUP to allocate (create space for) an array or string.

• Counter and argument must be constants or constant
expressions.

Dr Mazleena Salleh Programming 1 27

Defining WORD and SWORD Data
(2 bytes)

• Define storage for 16-bit integers

– or double characters

– single value or multiple values

Dr Mazleena Salleh Programming 1 28

BYTE vs WORD

Dr Mazleena Salleh Programming 1 29

WORD

Dr Mazleena Salleh Programming 1 30

Defining DWORD and SDWORD Data
(4 bytes)

• Storage definitions for signed and unsigned 32-bit integers:

Dr Mazleena Salleh Programming 1 31

Defining QWORD (8 bytes) , TBYTE (10
bytes), Real Data

• Storage definitions for quadwords, tenbyte values, and real
numbers:

Dr Mazleena Salleh Programming 1 32

0008:

Little Endian Order

• All data types larger than a byte store their individual bytes in
reverse order.

• The least significant byte (LSB) occurs at the first (lowest)
memory address.

Dr Mazleena Salleh Programming 1 33

Example 1

• MyData DWORD 3740625, 2 DUP (2ABCCDEh)

Dr Mazleena Salleh Programming 1 34

Example 2

• MyData2 WORD ‘B’, 25, 3 DUP (4FAh)

Dr Mazleena Salleh Programming 1 35

Equal-Sign Directive

• name = expression

– expression is a 32-bit integer (expression or constant)

– may be redefined

– name is called a symbolic constant

• good programming style to use symbols

Dr Mazleena Salleh Programming 1 36

EQU Directive

Dr Mazleena Salleh Programming 1 37

