Module 2:
Data Representation In
Computer Systems

BOOK: COMPUTER ORGANIZATION AND DESIGN,3ED, DAVID L.
PATTERSON AND JOHN L. HANNESSY, MORGAN KAUFMANN
PUBLISHERS

innovative e entrepreneurial e global

Contents

Introduction
Fixed-Number Representation

= Unsigned Numbers
= Signed Numbers

Fixed-Number Arithmetic

x Addition and Subtraction
= Multiplication
x Division

Floating-Point Representation

O

IEEE-754 Floating-Point Standard

Floating-Point Arithmetic

«Addition
=Multiplication

Sem11415_hkm

Floating-Point
Representation

111111111111

Real Numbers

4

Two’'s complement representation deal with sighed
Integer values only.

Without modification, these formats are not useful

In scientific or business applications that deal with
real number values.

Floating-point representation solves this problem.

Sem11415 hkm

http://www.mathsisfun.com/numbers/real-numbers.html

Floating Point Representation

Floating point aids in the representation of very big

or very small fixed point numbers.

10000000000 Fixed point

1.0 x 10%° Floating point

976,000,000,000,000 =» 9.76 x 104
0.0000000000000976 = 9.76 x 1014

Sem11415 hkm

Floating Point Numbers

6

Signiﬁcand/Fraction/Mantissa m

--\

Fraction and

Exponent can be Decimal numbers use the
+ve or —ve. radix 10, binary use 2

Sem11415_hkm

Normalized and Unnormalized

In generalized normalization (in general mathematics), a
floating point number is said to be normalized if the number
after the radix point is a non-zero value.

Un-normalized floating number is when the number after
the radix pointis ‘0’.
0.0011 x 10%°

Example: " number after the . 35 —
- radix point is a non- | unnormalize
._zero value. ‘

-------- 11.0123 x 101
0.1234 x 106 =» unnormalized

= normalized

0.133x10°

= normalized

Sem11415 hkm

Normalization Process

Normalization is the process of deleting the zeroes until a
non-zero value is detected.

0.00234 x 10* => 0.234x10%2=» 0.234 x 10?2

12.0024 x 104 => 0.120024 x 10**2=» 0.120 x 10°

A rule of thumb:
moving the radix point to the right = subtract exponent
moving the radix point >

Sem11415_hkm

Example

Decimal
24.89 x 108° =>» 0.249 x 10892 =» 0.249 x 101
Binary

11.00110 x 2-110011 0.00011011 x 21001

=>0.1100110 x 2(-110011)+(010) =3(0,11011 x 2(1001)-(0011)
= 0.1100110 x 2-110001 => 0.11011 x 20110

Sem11415_hkm

Floating-Point Format for Binary Numbers

The general form of floating-point is:

+ 0.Fraction x Base = exponent, e

In binary:

2 (ion _ Exponent EYEED

Fraction

1 word

Sem11415_hkm

Example: Non-biased exponent

9 bit-hypothetical word

=the first bit is used for the sign of the number,
»the second bit for the sign of the exponent,
sthe next four bits for the fraction, and

»the next three bits for the exponent

(54.75),, = (110110 .11), = (1.1011011), x 2°
~ (1.1011), x (101),

We have the representation as

|001011101

\§ AN _J
i > ~
fraction exponent

Sign of the Sign of the
number exponent

Sem11415 hkm

Biased Exponent

The 2 signs bit are not good for design as it incurs extra

cost. = need new representation

Fraction

,/ \\ ,’ \\
V4 \‘ V4 \‘
T ——j
[(sign) Il + (sign)
\ 4 7

\\ ;’i \\ /’l

g p F g

<

1 word

Sem11415_hkm

Biased Exponent

13

A new value to represent the exponent without the
sign bit is introduced
o This will eliminate the sign for the exponent value that is the

exponent will be positive. (indicative)

+/- (sign) | Biased Exponent Fraction

< >
1 word

+/- (1 bit) E, (n bit) Fraction, f

Sem11415 hkm

Biased Exponent

14
+/- (1 bit) E, (n bit) Fraction, f
: Where,
Biased value, b = 2" E, = biased exponent
- n = bits of exponent format (i.e.
Normalized exponent, e’ = E,- b the word format)

Biased exponent, E,=e’+b

This is used unless the IEEE standard is
mentioned — then is a different
calculation

Sem11415 hkm

Conversion to Floating Point Number

The steps:

o Change to binary (if given decimal number)
o Normalized the number

o Change the number to biased exponent

o Form the word (3 fields of a given format)

Example 3

16

Transform -33. 625 to floatlng point word using the

Fracti
fO”E Sign 1‘3{ Blased exponent /gf:gcni?il(l:and
1 bit 4 bit 12 bit

Step 1 : Change 33.625 to binary

33 =» 0100001

0.625x2= 1.25=>1
0.25 x2=0.5=>0
0.5x2=10=2>1
0.0

This is the given

word format

0.625=.101

Sem11415 hkm

Example 3

Step 3. Change thg,fn'l]}nber to biased exponent

/ 1 bit _4bit 12 bit

2 (sign)- JRNNNNZNNN Fraction

-

-
-
-
-
-
-
-
=z

r o
Biased value, b = 2"t = 241

|
o0
=
o
|
Y
o
o
o
N

I
|
|
|
I
1
1
1
#

Biased exponent, E,.=e’+ b =0110 + 1000 = 1110

(6000368 K258 [-Jo.100001101! x2 5]

Example 3

I0.100001101 X2 ‘1“0

Step 4 : Form the word (3 fields)

1 bit 4 bit 12 bit
ssign) | o0 Fraction Padding
1 1110 100001101000

Rule of thumb:
-the biased exponent is always padded to the left
- the Fraction is always padded to the right

Sem11415_hkm

FLOATING POINT STANDARD

Defined by IEEE Std 754-1985

Developed in response to divergence of
representations

o Portability issues for scientific code
Now almost universally adopted
Two representations

o Single precision (32-bit)

o Double precision (64-bit)

Sem11415 hkm

IEEE 754 Floating-Point Standard

31 38 23 22 B
S | Exponent (E) Fraction (F)

<3< > < >
1 8 23

32-bit Single-Precision Floating-point Number

63 62 52 51 %)
S| Exponent (E) Fraction (F)
> > € >
1 11 52

64-bit Double-Precision Floating-point Number

Sem11415 hkm

IEEE 754 Floating-Point Standard

= Used in virtually every computer invented since 1980

= [0 pack more bits into the significand, the leading 1
bit of normalized binary number is made implicit
= Original: 1.X00XKXXX X, x 29 — (-1)5 x F x 2F
= Modified: (-1)5 x (1+Fraction) x 2E
= Significand: 1 plus the fraction

= Single precision: 24 bits The 1 in (1 + Fraction) is made implicit
= Double precision: 53 bits =>» to pack more bits into the significand

Sem11415 hkm

Normalized Scientific Notation in IEEE 754

In IEEE standard for normalization (used in computers), a
floating point number is said to be normalized if there is
only a single non-zero before the radix point.

Example: there is only a single non-zero
. before the radix point. |

~

-

-
P
-
-
l P
-
-
-
P
L

123.456 =» normalized 1 23456 x 102

1010.1011, =» normalized 1.0101011 x 201

Sem11415 hkm

Biased Notation in IEEE 754

= The desired notation must represent the most
nhegative exponent as 00...00,,, and the most
positive as 11...11, .

« IEEE 754 uses a bias of 127 for single precision
(and 1023 for double precision)
« -1 »-1+127, = 0111 1110,

. +1 14127, = 1000 0000, | 2

=>»In single precisionis 127
=>»In double precision 1023

ten

Sem11415 hkm

Biased Notation in IEEE 754

single: 8 bits single: 23 bits
double: 11 bits double: 52 bits
S | Exponent Fraction

x = (—1)° x (1+Fraction)x 2&®enent-8ias)

o Exponent: excess representation: actual exponent +
Bias
e Ensures exponent is unsigned
e Single precision: Bias = 127,
» Double precision: Bias =1023

Sem11415 hkm

Excess-k representation

Yet another way to represent numbers in binary.
For N bit numbers, k is 2N-1-1
So for 4-bit integers, kis 7

The value of each bit string is its unsigned value
minus k. (i.e. ‘unsigned value’— k)

25 Sem11415 hkm

Excess-k representation: 4-bit excess 7

n . n
Shiding ruler Unsigned Excess-k
0000 .. 0 7 (i.e. 0-7)
0001 e, 1 6 (ie. 1-7)
0010....ceee.... 2 -5 (le.2-7)
1) S T 3 4 (i.e.3-7)
0100......coeen..... 4 3 (i.e.4-7)
1) () 5 -2 (1.e. 5-7)
0110 6 -1 (i.e. 6-7)
1) P 7 i (i.e. 7-7)
1000......cooeee..... 8 1 (i.e. 8-7)
(00} D 9 2 (i.e. 9-7)
1010.eeeeeeeen. 10 3 (i.e. 10-7)
(1) S P 11 4 (ie. 11-7)
1100......ccreerrnnes 12 5 (ie. 12-7)
1§ (1) R—— 13 6 (i.e. 13-7)
1§ B (UR— 14 7 (ie. 14-7)
1 L & 5 (ie. 15-7)

Excess-k representation: Example

Convert -14 (decimal) to 8-bit excess-k

Whatis k ?
k =2N-1-1 =28%1.1 =127

Find the number u such that u - k = -14.
u-127=-14, impliesu =113

Convert u to unsigned binary:
001110001

27

Sem11415 hkm

8-bit : excess-127

8 bit excess-127

Binary Excess-127 Unsigned
value | interpretation interpretation

00000000 -127 0
00000001 -126 1
01111111 0 127
10000000 1 128
10000001 2 129

11111111 +128 255

Sem11415 hkm

8-bit : excess-127

e Meaning
0000 0000 Reserved
0000 0001 -126,,
0000 0010 -125,,
0111 1111 049
1111 1110 127,

1111 1111

Reserved

Sem11415 hkm

IEEE FLOATING-POINT FORMAT

single: 8 bits single: 23 bits
double: 11 bits double: 52 bits
S | Exponent Fraction

2(E)q:>c:nent—Bias)

X =(—1)°x (1+Fraction)x

o S: sign bit (0 = non-negative, 1 = negative)

o Normalize significand: 1.0 < | significand | < 2.0
o Significand is Fraction with the “1.” restored

» Always has a leading pre-binary-point 1 bit, so no need to
represent 1t explicitly (hidden bit)

Sem11415 hkm

SINGLE-PRECISION RANGE

o Smallest value

e Exponent: 00000001
= actual exponent =1 - 127 =-126

e Fraction: 000...00 = significand = 1.0
e 1.0 %X 27126 = +1.2 X 1038

o Largest value

e exponent: 11111110 ~%>%w
= actual exponent = 2564 — 127 = +127

e Fraction: 111...11 = significand = 2.0
e +2.0 X 2¥127~ 43 4 x 1(0*38

0 Exponents 00000000 and 11111111 are reserved

hkm

DOUBLE-PRECISION RANGE

0 Exponents 0000...00 and 1111...11 are reserved

o Smallest value

e Exponent: 00000000001

= actual exponent =1 - 1023 =-1022
e Fraction: 000...00 = significand = 1.0
o +£]1.0 X 271022 % 49 2 x 1(—308

o Largest value

e Exponent: 11111111110
= actual exponent = 2046 — 1023 = +1023

e Fraction: 111...11 = significand = 2.0
o +2 0 X 2+1023 ~+1.8 X 10+308

---------------------------- Sem11415_hkm

IEEE 754 Conversion

To convert a decimal number to single (or double)
precision floating point:

o Step 1: Normalize

o Step 2: Determine Sign Bit

o Step 3: Determine exponent

o Step 4: Determine Significand

Sem11415 hkm

IEEE 754 Conversion : Example 1

Convert 10.4, to single precision floating point.

Step 1. Normalize
10 = 00001010

0.4x2=08=20
0.8 x2=16=21
0.6 x2=12=21
0.2x2 =0.4=20
04x2=0.8=20
0.8x2=16=21

For continuous

results, take the 15t
pattern before it
repeats itself

0.4=.0110

Sem11415_hkm

IEEE 754 Conversion : Example 1

Step 2: Determine Sign Bit (S)
o Because (10.4) is positive, S =0

|-) 1.0100110 x 2]3
Step 3. Determine exponent

o Because Its single precision = bias = 127
o Exponent = 3 + bias

=3+ 127

=130,

= 1000 0010,

Sem11415 hkm

IEEE 754 Conversion : Example 1

Step4. Determine Significand
Drop the leading 1 of the significand

1.0100110x 23> =» 0100110

Then expand (padding) to 23 bits
01001100000000000000000

sign Exponent Significand

0 10000010 01001100000000000000000

Exponent =1000 0010,

Sem11415 hkm

IEEE 754 Conversion : Example 2

Convert -0.754 to single precision floating point.
Step 1. Normalize

0.75x2=15=>1
0.5 x2=1.0=2>1 -0.75=-0.11
0.0x2=0=0

Sem11415_hkm

IEEE 754 Conversion : Example 2

Step 2: Determine Sign Bit (S)
o Because (-0.75) Is negative, S=1

Step 3. Determine exponent
o Because Its single precision =» bias = 127
o Exponent = -1 + bias

=-1+127

=126,

= 01111110,

Sem11415 hkm

IEEE 754 Conversion : Example 2

Step4:. Determine Significand
Drop the leading 1 of the significand

-1.1x 21

=> 0.1

Then expand (padding) to 23 bits

10000000000000000000000

sign

Exponent

Significand

1

01111110

10000000000000000000000

Sem11415 hkm

IEEE 754 Conversion : Example 3

Convert -0.754 to double precision floating point.
Step 1. Normalize

0.75x2=15=2>1
0.5 x2=1.0=>1 -0.75=-0.11

HNE=00 douxzr

Sem11415_hkm

IEEE 754 Conversion : Example 3

Step 2: Determine Sign Bit (S)
o Because (-0.75) Is negative, S=1

Step 3. Determine exponent
o Because its double precision =» bias = 1023
o Exponent = -1 + bias

=-1+ 1023

= 1022,

= 01111111110,

Sem11415 hkm

IEEE 754 Conversion : Example 3

Step4:. Determine Significand
Drop the leading 1 of the significand

-1.1x 21

Then expand (padding) to 52 bits
10000000000000000000000

=> 0.1

........ 00

-0.75

sign

Exponent (11)

Significand (52)

1

01111111110

1000000000000000000...00

Sem11415 hkm

Converting Binary to Decimal Floating-Point

Remember: Biased notation =» (-1)sign x (1 + Fraction) x 2 (exponent-bias)

What decimal number is represented by this single
precision float?
Sign (1 bit) | Exponent(8 bit) Significand(23 bit)
1 10000001 | 01000000000000000000000

Extract the values:

Sign=1 The Fraction =-(1 + 0.25)
Exponent = 10000001b = 129d

Significand
=(0x21)+(1x22)+(0x23)
= % =0.25

Math basic ... fraction number!

44

154 = 1/10 + 5/100 + 4/1000 4_-

11 +5. 1 44t

10° 10° 10°

1011 = 1/2 + 0/4 + 1/8 + 1/16 4-

Lo 40+l 41

2' 2° 2° 2°

Sem11415_hkm

Floating-Point Arithmetic

11111111111

Floating-Point Addition Flows

Exponent range
single precision: -126~127
double precision: -1022~1023

Floating-
Point
ALU

Block diagram of an arithmetic unit dedicated

to floating-point addition.

Sign

Exponent

Significand

Sign | Exponent

Significand

'

v

v

"V
Small ALU

Exponentd
difference

\ 4

o1)

<Contro|

}

L —

\4

ka

:(0

A

Shift

—(0 1

decrement

Increment or(j

—>

Shift left or right

I_l

v

Rounding hardware

A A

A

Sign

Exponent

Significand

Comparel
exponents [
O

Shift smallerd
number right [
O

Add

Normalize

Round

Sem11415 hkm

Decimal Floating-Point Addition

Assume 4 decimal digits for significand and 2 decimal digits
for exponent

- Step 1: Align the decimal point of the number that has the smaller
exponent

- Step 2: Add the significand
. Step 3: Normalize the sum

check for overflow/underflow of the exponent after
normalisation
- Step 4: Round the significand

If the significand does not fit in the space reserved for
it, it has to be rounded off
- Step 5: Normalize it (if need be)

Sem11415 hkm

A) Decimal Floating-Point Addition

Example: 9.999,x 10! + 1.610, x 10

Step 1: Align the decimal point of the number that has the
smaller exponent

Make 1.6104 x 10"* to 10!
2>-1+x=1=»x=2-> move 2 to left
=> 0.0161,x 10?

Step 2: add the significand

9.9990 x 101
+ 0.0161, x 10*

10.0151 x 101

Sem11415 hkm

A) Decimal Floating-Point Addition

Example: 9.999,x 10! + 1.610, x 10

Step 3: Normalize the sum
10.0151 x 10 =» 1.00151 x 102

Step 4: Round the significand (to 4 decimal digits for
significand)

1.00151 x 10% =» 1.0015 x 102

Step 5: Normalize it (if need be)

No need as its normalized

Sem11415 hkm

B) Binary Floating-Point Addition

Example: 0.5, + (-0.4375,)

Convert the numbers to binary

0.5=>» 0.10, x 2°=>» 1.0, x 21
-0.4375 > -0.0111, x 20 -1.11, x 2

Step 1: Align the decimal point of the number that has the

smaller exponent

Make 1.11, x 2% to 21
=>-2+x=-1=2 x=1-2> move 1 to left
>-0.111, x 2

Sem11415 hkm

B) Binary Floating-Point Addition

Example: 0.5, + (-0.4375,)

.. 1.000 x 21 1.000 x 21
. I- .

0.001 x 21
Step 3: Normalize the sum

0.001 x 21 =» 1.0000 % 24
Step 4: Round the significand (to 4 decimal digits for
significand)
Fits in the 4 decimal digits
Step 5: Normalize it (if need be)

No need as its normalized

Sem11415 hkm

Floating-Point Multiplication Flows

Sem11415_hkm

A) Floating-Point Multiplication (decimal)
| Example: (1.110, x 10%%) x (9.200, x 10~)

Assume 4 decimal digits for significand and 2 decimal digits
for exponent

Step 1: Add the exponent of the 2 numbers
10+ (-5) =5 If biased is considered =» 10 + (-5) + 127 = 132

Step 2: Multiply the significands

9.200
x 1.110

92000
9200 => 10.212000 =»10.2120x 10°
9200

10.212000

Sem11415 hkm

A) Floating-Point Multiplication (decimal)

| Example: (1.110, x 10%°) x (9.200, x 107)

Step 3: Normalize the product
10.2120x 10°=» 1.02120 x 106

Step 4: Round the significand (4 decimal digits for
significand)
1.0212 x 10°

Step 5: Normalize it (if need be)

Still normalized
Step 6: Set the sign of the product
+1.0212 x 10°

Sem11415 hkm

B) Floating-Point Multiplication (binary)

B Example: (1.000, x 21) x(-1.110, x 2°?)

Assume 4 binary digits for significand and 2 binary digits for
exponent

Step 1: Add the exponent of the 2 numbers
-1+(-2)=-3 If biased is considered =» -1+ (-2) + 127 =124
Step 2: Multiply the significands

1.110
x 1.000

1110000

->1.110000 => 1.110000 =»1.110000 x 23

Sem11415 hkm

B) Floating-Point Multiplication (binary)

| Example: (1.000, x 21) x (-1.110, x 22)

Step 3: Normalize the product
1.110000 x 23 =» already normalized

Step 4: Round the significand (4 binary digits for
significand)
1.1100x 23

Step 5: Normalize it (if need be)

Still normalized
Step 6: Set the sign of the product
-1.1100,x23 = -7/32,

Sem11415 hkm

Accurate Arithmetic: Overflow & Underflow

If a calculation exceeds the limits of the floating point

scheme = then CPU will flag this error. If number is
Negative Positive too tilly to be
Underflow Underflow represented
Negative Expressible Negative V4 Expressible Positive Positive
Overflow Numbers \ s Numbers Overflow
F\W—WW
V////////////////////A V/// single: 8 bits single: 23 bits
« o e e Xz double: 11 bits double: 52 bits
- -2 0 2
(55 eihug Pt Niacobae S| Exponent Fraction

l.e. a +ve OR —ve exponent becomes too large to fit in
the exponent field:

o +ve exponent TOO LARGE = ‘overflow’
o -ve exponent TOO LARGE = ‘underflow’

Sem11415 hkm

Accurate Arithmetic : Truncation & Rounding

Some number have infinite decimal points (the irrational
numbers) = 1/3, = 0.3333333333

Truncation is done to fit the decimal points into manageable
units.

o Truncation is where decimal values beyond the truncation point are
simply discarded and it can cause error in floating point calculations.

Rounding :If you have a number such as 3.456 then if you have
to round this to 3 significant digits, the number becomes 3.46

o Asmall error called the rounding error has occurred

***Note : the CPU will not flag any error when truncation and
rounding occurs, as it is acting within its limits. =» programmers
must assess if this will lead to significant errors

Sem11415 hkm

Summary

Over the decades, computer arithmetic has become
largely standardized, greatly enhancing the portability of
programs.

Two’s complement binary integer arithmetic is found in
every modern computer.

And binary floating-point arithmetic is supported by the
IEEE 754 standard.

Computer arithmetic Is distinguished from paper-and-
pencil arithmetic by the constraints of limited
precision.

... may result in invalid operations through calculating
numbers larger or smaller than the predefined limits,
known as“overflow” or “underflow”

Sem11415 hkm

Module 2: Outline

Introduction

Fixed-Number Representation
xUnsigned Numbers
= Signed Numbers

Fixed-Number Arithmetic
= Addition and Subtraction
= Multiplication
xDivision
Floating-Point Representation
o |IEEE-754 Floating-Point Standard

Floating-Point Arithmetic
= Addition
= Multiplication

Sem11415_hkm

End of Module 2

11111111111

