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Floating-Point 

Representation 
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 Two’s complement representation deal with signed 

integer values only. 

 Without modification, these formats are not useful 

in scientific or business applications that deal with   

real number values. 

 Floating-point representation solves this problem. 

Real Numbers 

4 

http://www.mathsisfun.com/numbers/real-numbers.html
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Floating Point Representation 

 Floating point aids in the representation of very big 

or very small fixed point numbers. 

10000000000 

1.0 x 1010 

Fixed point 

Floating point 

976,000,000,000,000  9.76 x 1014 

0.0000000000000976  9.76 x 10-14 
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Floating Point Numbers  
6 

736.637 x 1068 

Significand/Fraction/Mantissa 

Base/radix 

Exponent 

Decimal numbers use the 
radix 10, binary use 2 

Fraction and 
Exponent can be 
+ve or –ve. 
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Normalized and Unnormalized 

 In generalized normalization ( in general mathematics), a 

floating point number is said to be normalized if the number 

after the radix point is a non-zero value. 

 Un-normalized floating number is when the number after 

the radix  point is ‘0’. 

 Example: 

 

7  normalized 

0.133 x 105 

0.0011 x 1015 

 unnormalized 

11.0123 x 1011 

 unnormalized 0.1234 x 1016 

 normalized 

number after the 
radix point is a non-
zero value. 
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Normalization Process 

 Normalization is the process of deleting the zeroes until a 

non-zero value is detected. 

 Example : 

A rule of thumb: 

moving the radix point to the right  subtract exponent  

moving the radix point to the left  add exponent 

0.00234 x 104  0.234 x 104-2  0.234 x 102 

12.0024 x 104  0.120024 x 104+2  0.120 x 106 

 Move radix point to the left (in this case 2 points) 

Move radix point to the right (in this case 2 points) 
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Example 

24.89 x 1089  0.249 x 1089+2  0.249 x 1091 

11.00110 x 2-110011 

0.1100110 x 2(-110011)+(010)  
 0.1100110 x 2-110001 

 

Decimal 

Binary 

0.00011011 x 21001 

0.11011 x 2(1001)-(0011)  
 0.11011 x 20110 
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 The general form of floating-point is: 

 

 

 In binary: 

 

 

 

 

Floating-Point Format for Binary Numbers 

± 0.Fraction x Base ± exponent, e’ 

± (sign) Exponent ± (sign) Fraction 

1 word 
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Example: Non-biased exponent 

     

   
22

5

2210

1011011.1

21011011.111.11011075.54





9 bit-hypothetical word 

the first bit is used for the sign of the number,  

the second bit for the sign of the exponent,   
the next four bits for the fraction, and 
the next three bits for the exponent  

 

 We have the representation as 

0 0 1 0 1 1 1 0 1 

Sign of the 
number 

fraction 
Sign of the 
exponent 

exponent 
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 The 2 signs bit are not good for design as it incurs extra 

cost.  need new representation 

Biased Exponent 

± (sign) Exponent ± (sign) Fraction 

1 word 
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Biased Exponent 
13 

 A new value to represent the exponent without the 

sign bit is introduced 

 This will eliminate the sign for the exponent value that is the 

exponent will be positive. (indicative) 

+/- (sign) Biased Exponent Fraction 

1 word 

+/- (1 bit) Et (n bit) Fraction, f 
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Biased Exponent 
14 

Biased value, b = 2n-1 

+/- (1 bit) Et (n bit) Fraction, f 

Normalized exponent, e’ = Et - b 

Where, 
Et = biased exponent 
n = bits of exponent format (i.e. 
the word format) 

Biased exponent, Et = e’ + b 

This is used unless the IEEE standard is 
mentioned – then is a different 
calculation 



Conversion to Floating Point Number 

 The steps: 

Change to binary (if given decimal number) 

Normalized the number 

Change the number to biased exponent 

Form the word (3 fields of a given format) 
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Example 3 
16 

 Transform -33.625 to floating point word using the 

following format (radix 2) 

 

 Step 1 : Change 33.625 to binary 

1 bit 4 bit 12 bit 

Sign Biased exponent 
Fraction 
/Significand 

This is the given 
word format 

33  0100001 

0.625 x 2 =  1.25  1 
0.25   x 2 = 0.5  0 
0.5  x  2  = 1.0  1 
0.0  

0.625 = .101 

33.625  
= 0100001.101 



Example 3 

 Step 2 : Normalized the number 

 

 

 Step 3: Change the number to biased exponent 

 

 

0100001.1012  0.1000011012 x 2 0110 

Normalized 
exponent, e’  

Biased value, b = 2n-1   = 24-1 = 810 = 10002
   

Biased exponent, Et = e’ + b = 0110 + 1000 = 1110 

0.100001101 2x 2 0110 
 0.1000011012 x 2 1110 
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Example 3 

 Step 4 : Form the word (3 fields) 

 

 

 

 

1 1110 100001101000 

0.100001101 x 2 1110 

Padding 

Rule of thumb:  
-the biased exponent is always padded to the left 
- the Fraction is always padded to the right 

-33.625 
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FLOATING POINT STANDARD 

 Defined by IEEE Std 754-1985 

 Developed in response to divergence of 

representations 

 Portability issues for scientific code 

 Now almost universally adopted 

 Two representations 

 Single precision (32-bit) 

Double precision (64-bit) 
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IEEE 754 Floating-Point Standard 
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IEEE 754 Floating-Point Standard 

The 1 in (1 + Fraction) is made implicit 
 to pack more bits into the significand 
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Normalized Scientific Notation in IEEE 754 

 In IEEE standard for normalization (used in computers), a 

floating point number is said to be normalized if there is 

only a single non-zero before the radix point. 

 Example: 

 

123.456 

there is only a single non-zero 
before the radix point. 

 normalized 1.23456 x 102 

1010.1011B  normalized 1.0101011 x 2011 
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Biased Notation in IEEE 754 

Bias  
In single precision is 127 
In double precision 1023 
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Biased Notation in IEEE 754 
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Excess-k representation 

 Yet another way to represent numbers in binary. 

 For N bit numbers, k is 2N-1-1 

 So for 4-bit integers, k is 7 

 The value of each bit string is its unsigned value 
minus k. (i.e. ‘unsigned value’ – k ) 
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Excess-k representation: 4-bit excess 7 
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Excess-k representation: Example 

 Convert  -14 (decimal) to 8-bit excess-k 

 What is k ? 
k = 2N-1-1 = 28-1-1 = 127 

 Find the number u such that  u - k = -14. 
u - 127 = -14, implies u = 113 

 Convert u to unsigned binary:  
001110001 
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8-bit ; excess-127 
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8-bit ; excess-127 
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= 25410 
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DOUBLE-PRECISION RANGE 



Sem11415_hkm 

 To convert a decimal number to single (or double) 

precision floating point: 

 Step 1: Normalize 

 Step 2: Determine Sign Bit 

 Step 3: Determine exponent 

 Step 4: Determine Significand 

IEEE 754 Conversion  
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 Convert 10.4d to single precision floating point. 

 Step 1: Normalize 

 

IEEE 754 Conversion : Example 1  

10  00001010 

0.4 x 2 =  0.8  0 
0.8   x 2 = 1.6  1 
0.6  x  2  = 1.2  1 
0.2 x 2  = 0.4  0 
0.4 x 2 = 0.8  0 
0.8 x 2 = 1.6  1  

0.4 = .0110 10.4  = 1010.0110 x 20 

For continuous 
results, take the 1st 

pattern before it 
repeats itself 

 1.0100110 x 23 



Sem11415_hkm 

 Step 2: Determine Sign Bit (S) 

Because (10.4) is positive, S = 0 

 

 Step 3: Determine exponent 

Because its single precision  bias = 127 

Exponent = 3 + bias  

      = 3 + 127  

       = 130d  

       = 1000 0010b 

 

IEEE 754 Conversion : Example 1  

 1.0100110 x 23 
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 Step4:  Determine Significand 

Drop the leading 1 of the significand 

 

 

Then expand (padding) to 23 bits 

 

 

IEEE 754 Conversion : Example 1  

1.0100110 x 23 
 0100110 

01001100000000000000000 

sign Exponent Significand 

0 10000010 01001100000000000000000 
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 Convert -0.75d to single precision floating point. 

 Step 1: Normalize 

 

IEEE 754 Conversion : Example 2  

0.75 x 2 =  1.5  1 
0.5   x 2 = 1.0  1 
0.0  x  2  = 0  0 

- 0.75 = - 0.11  -0.11 x 20 

 -1.1 x 2-1 
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 Step 2: Determine Sign Bit (S) 

Because (-0.75) is negative, S = 1 

 

 Step 3: Determine exponent 

Because its single precision  bias = 127 

Exponent  = -1 + bias  

       = -1 + 127  

   = 126d  

   = 01111110b 

 

 

IEEE 754 Conversion : Example 2  
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 Step4:  Determine Significand 

Drop the leading 1 of the significand 

 

 

Then expand (padding) to 23 bits 

 

 

IEEE 754 Conversion : Example 2  

-1.1 x 2-1 
 0.1 

10000000000000000000000 

sign Exponent Significand 

1 01111110 10000000000000000000000 
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 Convert -0.75d to double precision floating point. 

 Step 1: Normalize 

 

IEEE 754 Conversion : Example 3  

0.75 x 2 =  1.5  1 
0.5   x 2 = 1.0  1 
0.0  x  2  = 0  0 

- 0.75 = - 0.11 

 -0.11 x 20 

 -1.1 x 2-1 
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 Step 2: Determine Sign Bit (S) 

Because (-0.75) is negative, S = 1 

 

 Step 3: Determine exponent 

Because its double precision  bias = 1023 

Exponent = -1 + bias  

                   = -1 + 1023  

                   = 1022d  

                   = 01111111110b 

 

 

IEEE 754 Conversion : Example 3  
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 Step4:  Determine Significand 

Drop the leading 1 of the significand 

 

 

Then expand (padding) to 52 bits 

 

 

IEEE 754 Conversion : Example 3  

-1.1 x 2-1 
 0.1 

10000000000000000000000……..00 

sign Exponent (11) Significand (52) 

1 01111111110 1000000000000000000...00 

-0.75 



Converting Binary to Decimal Floating-Point 

 What decimal number is represented by this single 

precision float? 

 

 

 Extract the values:              

Sign (1 bit) Exponent(8 bit)  Significand(23 bit)  

1 10000001 01000000000000000000000 

Remember: Biased notation  (-1)sign x (1 + Fraction) x 2 (exponent-bias) 

Sign = 1 

Exponent = 10000001b  = 129d 
The Fraction  = -(1 + 0.25)   

Significand  
= (0 x 2-1) + (1 x 2-2) + (0 x 2-3) 
=  ¼ = 0.25  

The number 
= - (1.25 x 2 (exponent-bias) ) 
= - (1.25 x 2 ( 129 – 127 ) ) 
= - (1.25 x 22) 
= - (1.25 x 4) = -5.0 
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Math basic … fraction number! 
44 

 .154 =  1/10 + 5/100 + 4/1000 

 

 

 

 .1011 = 1/2 + 0/4 + 1/8 + 1/16 

 

1.
1

101
 + 5.

1

102
 + 4.

1

103

1.
1

21
 + 0.

1

22
 + 1.

1

23
 + 1.

1

24

Decimal = 
base 10 

Binary = 
base 2 
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Floating-Point Arithmetic 



Floating-Point Addition Flows 
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Floating-

Point  

ALU 

47 

0
10 1 0 1

Control

Small ALU

Big ALU

Sign Exponent Significand Sign Exponent Significand

Exponent

difference

Shift right

Shift left or right

Rounding hardware

Sign Exponent Significand

Increment or

decrement

0 10 1

Shift smaller


number right 





Compare


exponents 





Add

Normalize

Round

Block diagram of an arithmetic unit dedicated 

to floating-point addition. 
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Decimal Floating-Point Addition 

• Assume 4 decimal digits for significand and 2 decimal digits 

for exponent 

• Step 1: Align the decimal point of the number that has the smaller 

exponent 

• Step 2: Add the significand 

• Step 3: Normalize the sum 

• check for overflow/underflow of the exponent after 

normalisation 

• Step 4: Round the significand  

• If the significand does not fit in the space reserved for 

it, it has to be rounded off 

• Step 5: Normalize it (if need be) 
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A) Decimal Floating-Point Addition 

• Step 1: Align the decimal point of the number that has the 

smaller exponent 

 

 

 

• Step 2: add the significand 

 

Example: 9.999d x 101 + 1.610d x 10-1 

Make 1.610d x 10-1 to 101 

-1 + x = 1  x = 2  move 2 to left 
 0.0161d x 101   

    9.9990    x 101 

+  0.0161d  x 101 

----------------------- 
  10.0151    x 101    
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A) Decimal Floating-Point Addition 

• Step 3: Normalize the sum 

 

 

• Step 4: Round the significand (to 4 decimal digits for 

significand) 

 

•   

• Step 5: Normalize it (if need be) 

 

Example: 9.999d x 101 + 1.610d x 10-1 

10.0151 x 101  1.00151 x 102 

1.00151 x 102  1.0015 x 102 

No need as its normalized 
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B) Binary Floating-Point Addition 

• Convert the numbers to binary 

 

 

 

• Step 1: Align the decimal point of the number that has the 

smaller exponent 

 

 

 

 

0.5  0.10b x 20  1.0b x 2-1 

Example: 0.5d + (-0.4375d ) 

-0.4375  -0.0111b x 20  -1.11b x 2-2 

Make 1.11b x 2-2  to 2-1 

-2 + x = -1  x = 1  move 1 to left 
- 0.111b x 2-1 
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B) Binary Floating-Point Addition 

• Step 2: add the significand 

 

 

• Step 3: Normalize the sum 

 

• Step 4: Round the significand (to 4 decimal digits for 

significand) 

 

• Step 5: Normalize it (if need be) 

 

 

 

     1.000 x 2-1 

+  -0.111 x 2-1 

------------------ 
        

Example: 0.5d + (-0.4375d ) 

0.001 × 2-1  1.0000 × 2-4  

Fits in the 4 decimal digits 

No need as its normalized 

     1.000 x 2-1 

−   0.111 x 2-1 

------------------- 
     0.001 × 2-1   
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Floating-Point Multiplication Flows 
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A) Floating-Point Multiplication (decimal) 
55 

• Assume 4 decimal digits for significand and 2 decimal digits 

for exponent 

• Step 1: Add the exponent of the 2 numbers 

 

• Step 2: Multiply the significands 

 

 

Example: (1.110d  x 1010 ) x (9.200d x 10-5) 

10 + (-5) = 5 If biased is considered  10 + (-5) + 127 = 132 

       9.200 
  x   1.110 
-------------- 
      92000 
    9200 
  9200 
-------------- 
10.212000 

 10.212000 10.2120 x 105 
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A) Floating-Point Multiplication (decimal) 

56 

• Step 3: Normalize the product 

 

• Step 4: Round the significand (4 decimal digits for 

significand) 

 

• Step 5: Normalize it (if need be) 

 

• Step 6: Set the sign of the product 

 

Example: (1.110d  x 1010 ) x (9.200d x 10-5) 

10.2120 x 105 
 1.02120 x 106  

1.0212 x 106  

Still normalized 

+1.0212 x 106  
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B) Floating-Point Multiplication (binary) 

57 

• Assume 4 binary digits for significand and 2 binary digits for 

exponent 

• Step 1: Add the exponent of the 2 numbers 

 

• Step 2: Multiply the significands 

 

 

-1 + (-2) = -3 If biased is considered  -1 + (-2) + 127 = 124 

       1.110 
  x   1.000 
---------------------- 

  1110000 
 

-> 1.110000  1.110000 1.110000 x 2-3 

Example: (1.000b  x 2-1 ) x (-1.110b x 2-2) 
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B) Floating-Point Multiplication (binary) 

58 

• Step 3: Normalize the product 

 

• Step 4: Round the significand (4 binary digits for 

significand) 

 

• Step 5: Normalize it (if need be) 

 

• Step 6: Set the sign of the product 

 

Example: (1.000b  x 2-1 ) x (-1.110b x 2-2 ) 

1.110000 x 2-3 
 already normalized 

1.1100 x 2-3 

Still normalized 

-1.1100b x 2-3 
 -7/32 d 
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Accurate Arithmetic: Overflow & Underflow 

 If a calculation exceeds the limits of the floating point 
scheme  then CPU will flag this error. 

 

 

 

 

 

 i.e. a +ve OR –ve exponent becomes too large to fit in 
the exponent field: 

 +ve exponent TOO LARGE ⇒  ‘overflow’ 

 -ve  exponent TOO LARGE ⇒  ‘underflow’ 

 

If number is 
too tiny to be 

represented 
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Accurate Arithmetic : Truncation & Rounding 

 Some number have infinite decimal points (the irrational 

numbers)  1/3d = 0.3333333333 

 Truncation is done to fit the decimal points into manageable 

units. 

 Truncation is where decimal values beyond the truncation point are 

simply discarded and it can cause error in floating point calculations.  

 Rounding :If you have a number such as 3.456 then if you have 

to round this to 3 significant digits, the number becomes 3.46 

 A small error called the rounding error has occurred 

 ***Note : the CPU will not flag any error when truncation and 

rounding occurs, as it is acting within its limits.  programmers 

must assess if this will lead to significant errors 
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Summary 

 Over the decades, computer arithmetic has become 
largely standardized, greatly enhancing the portability of 
programs. 

 Two’s complement binary integer arithmetic is found in 
every modern computer. 

 And binary floating-point arithmetic is supported by the 
IEEE 754 standard. 

 Computer arithmetic is distinguished from paper-and-
pencil arithmetic by the constraints of limited 
precision. 

 ... may result in invalid operations through calculating 
numbers larger or smaller than the predefined limits, 
known as“overflow” or “underflow” 
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End of Module 2 


