
Sem11415_hkm

B O O K : C O M P U T E R O R G A N I Z AT I O N A N D D E S I G N , 3 E D , D AV I D L .

PAT T E R S O N A N D J O H N L . H A N N E S S Y, M O R G A N K A U F M A N N

P U B L I S H E R S

Module 2:

Data Representation in

Computer Systems

Sem11415_hkm

Contents

Introduction

Fixed-Number Representation

Unsigned Numbers

Signed Numbers

Fixed-Number Arithmetic

Addition and Subtraction

Multiplication

Division

Floating-Point Representation

 IEEE-754 Floating-Point Standard

Floating-Point Arithmetic

Addition

Multiplication

Sem11415_hkm

Floating-Point

Representation

Sem11415_hkm

 Two’s complement representation deal with signed

integer values only.

 Without modification, these formats are not useful

in scientific or business applications that deal with

real number values.

 Floating-point representation solves this problem.

Real Numbers

4

http://www.mathsisfun.com/numbers/real-numbers.html

Sem11415_hkm

Floating Point Representation

 Floating point aids in the representation of very big

or very small fixed point numbers.

10000000000

1.0 x 1010

Fixed point

Floating point

976,000,000,000,000  9.76 x 1014

0.0000000000000976  9.76 x 10-14

Sem11415_hkm

Floating Point Numbers
6

736.637 x 1068

Significand/Fraction/Mantissa

Base/radix

Exponent

Decimal numbers use the
radix 10, binary use 2

Fraction and
Exponent can be
+ve or –ve.

Sem11415_hkm

Normalized and Unnormalized

 In generalized normalization (in general mathematics), a

floating point number is said to be normalized if the number

after the radix point is a non-zero value.

 Un-normalized floating number is when the number after

the radix point is ‘0’.

 Example:

7  normalized

0.133 x 105

0.0011 x 1015

 unnormalized

11.0123 x 1011

 unnormalized 0.1234 x 1016

 normalized

number after the
radix point is a non-
zero value.

Sem11415_hkm

Normalization Process

 Normalization is the process of deleting the zeroes until a

non-zero value is detected.

 Example :

A rule of thumb:

moving the radix point to the right  subtract exponent

moving the radix point to the left  add exponent

0.00234 x 104  0.234 x 104-2  0.234 x 102

12.0024 x 104  0.120024 x 104+2  0.120 x 106

 Move radix point to the left (in this case 2 points)

Move radix point to the right (in this case 2 points)

Sem11415_hkm

Example

24.89 x 1089  0.249 x 1089+2  0.249 x 1091

11.00110 x 2-110011

0.1100110 x 2(-110011)+(010)
 0.1100110 x 2-110001

Decimal

Binary

0.00011011 x 21001

0.11011 x 2(1001)-(0011)
 0.11011 x 20110

Sem11415_hkm

 The general form of floating-point is:

 In binary:

Floating-Point Format for Binary Numbers

± 0.Fraction x Base ± exponent, e’

± (sign) Exponent ± (sign) Fraction

1 word

Sem11415_hkm

Example: Non-biased exponent

     

   
22

5

2210

1011011.1

21011011.111.11011075.54





9 bit-hypothetical word

the first bit is used for the sign of the number,

the second bit for the sign of the exponent,
the next four bits for the fraction, and
the next three bits for the exponent

 We have the representation as

0 0 1 0 1 1 1 0 1

Sign of the
number

fraction
Sign of the
exponent

exponent

Sem11415_hkm

 The 2 signs bit are not good for design as it incurs extra

cost.  need new representation

Biased Exponent

± (sign) Exponent ± (sign) Fraction

1 word

Sem11415_hkm

Biased Exponent
13

 A new value to represent the exponent without the

sign bit is introduced

 This will eliminate the sign for the exponent value that is the

exponent will be positive. (indicative)

+/- (sign) Biased Exponent Fraction

1 word

+/- (1 bit) Et (n bit) Fraction, f

Sem11415_hkm

Biased Exponent
14

Biased value, b = 2n-1

+/- (1 bit) Et (n bit) Fraction, f

Normalized exponent, e’ = Et - b

Where,
Et = biased exponent
n = bits of exponent format (i.e.
the word format)

Biased exponent, Et = e’ + b

This is used unless the IEEE standard is
mentioned – then is a different
calculation

Conversion to Floating Point Number

 The steps:

Change to binary (if given decimal number)

Normalized the number

Change the number to biased exponent

Form the word (3 fields of a given format)

Sem11415_hkm

Example 3
16

 Transform -33.625 to floating point word using the

following format (radix 2)

 Step 1 : Change 33.625 to binary

1 bit 4 bit 12 bit

Sign Biased exponent
Fraction
/Significand

This is the given
word format

33  0100001

0.625 x 2 = 1.25  1
0.25 x 2 = 0.5  0
0.5 x 2 = 1.0  1
0.0

0.625 = .101

33.625
= 0100001.101

Example 3

 Step 2 : Normalized the number

 Step 3: Change the number to biased exponent

0100001.1012  0.1000011012 x 2 0110

Normalized
exponent, e’

Biased value, b = 2n-1 = 24-1 = 810 = 10002

Biased exponent, Et = e’ + b = 0110 + 1000 = 1110

0.100001101 2x 2 0110
 0.1000011012 x 2 1110

Sem11415_hkm

Example 3

 Step 4 : Form the word (3 fields)

1 1110 100001101000

0.100001101 x 2 1110

Padding

Rule of thumb:
-the biased exponent is always padded to the left
- the Fraction is always padded to the right

-33.625

Sem11415_hkm

FLOATING POINT STANDARD

 Defined by IEEE Std 754-1985

 Developed in response to divergence of

representations

 Portability issues for scientific code

 Now almost universally adopted

 Two representations

 Single precision (32-bit)

Double precision (64-bit)

Sem11415_hkm

IEEE 754 Floating-Point Standard

Sem11415_hkm

IEEE 754 Floating-Point Standard

The 1 in (1 + Fraction) is made implicit
 to pack more bits into the significand

Sem11415_hkm

Normalized Scientific Notation in IEEE 754

 In IEEE standard for normalization (used in computers), a

floating point number is said to be normalized if there is

only a single non-zero before the radix point.

 Example:

123.456

there is only a single non-zero
before the radix point.

 normalized 1.23456 x 102

1010.1011B  normalized 1.0101011 x 2011

Sem11415_hkm

Biased Notation in IEEE 754

Bias
In single precision is 127
In double precision 1023

Sem11415_hkm

Biased Notation in IEEE 754

Sem11415_hkm 25

Excess-k representation

 Yet another way to represent numbers in binary.

 For N bit numbers, k is 2N-1-1

 So for 4-bit integers, k is 7

 The value of each bit string is its unsigned value
minus k. (i.e. ‘unsigned value’ – k)

Sem11415_hkm

Excess-k representation: 4-bit excess 7

Sem11415_hkm 27

Excess-k representation: Example

 Convert -14 (decimal) to 8-bit excess-k

 What is k ?
k = 2N-1-1 = 28-1-1 = 127

 Find the number u such that u - k = -14.
u - 127 = -14, implies u = 113

 Convert u to unsigned binary:
001110001

Sem11415_hkm

8-bit ; excess-127

Sem11415_hkm

8-bit ; excess-127

Sem11415_hkm

Sem11415_hkm

= 25410

Sem11415_hkm

DOUBLE-PRECISION RANGE

Sem11415_hkm

 To convert a decimal number to single (or double)

precision floating point:

 Step 1: Normalize

 Step 2: Determine Sign Bit

 Step 3: Determine exponent

 Step 4: Determine Significand

IEEE 754 Conversion

Sem11415_hkm

 Convert 10.4d to single precision floating point.

 Step 1: Normalize

IEEE 754 Conversion : Example 1

10  00001010

0.4 x 2 = 0.8  0
0.8 x 2 = 1.6  1
0.6 x 2 = 1.2  1
0.2 x 2 = 0.4  0
0.4 x 2 = 0.8  0
0.8 x 2 = 1.6  1

0.4 = .0110 10.4 = 1010.0110 x 20

For continuous
results, take the 1st

pattern before it
repeats itself

 1.0100110 x 23

Sem11415_hkm

 Step 2: Determine Sign Bit (S)

Because (10.4) is positive, S = 0

 Step 3: Determine exponent

Because its single precision  bias = 127

Exponent = 3 + bias

 = 3 + 127

 = 130d

 = 1000 0010b

IEEE 754 Conversion : Example 1

 1.0100110 x 23

Sem11415_hkm

 Step4: Determine Significand

Drop the leading 1 of the significand

Then expand (padding) to 23 bits

IEEE 754 Conversion : Example 1

1.0100110 x 23
 0100110

01001100000000000000000

sign Exponent Significand

0 10000010 01001100000000000000000

Sem11415_hkm

 Convert -0.75d to single precision floating point.

 Step 1: Normalize

IEEE 754 Conversion : Example 2

0.75 x 2 = 1.5  1
0.5 x 2 = 1.0  1
0.0 x 2 = 0  0

- 0.75 = - 0.11  -0.11 x 20

 -1.1 x 2-1

Sem11415_hkm

 Step 2: Determine Sign Bit (S)

Because (-0.75) is negative, S = 1

 Step 3: Determine exponent

Because its single precision  bias = 127

Exponent = -1 + bias

 = -1 + 127

 = 126d

 = 01111110b

IEEE 754 Conversion : Example 2

Sem11415_hkm

 Step4: Determine Significand

Drop the leading 1 of the significand

Then expand (padding) to 23 bits

IEEE 754 Conversion : Example 2

-1.1 x 2-1
 0.1

10000000000000000000000

sign Exponent Significand

1 01111110 10000000000000000000000

Sem11415_hkm

 Convert -0.75d to double precision floating point.

 Step 1: Normalize

IEEE 754 Conversion : Example 3

0.75 x 2 = 1.5  1
0.5 x 2 = 1.0  1
0.0 x 2 = 0  0

- 0.75 = - 0.11

 -0.11 x 20

 -1.1 x 2-1

Sem11415_hkm

 Step 2: Determine Sign Bit (S)

Because (-0.75) is negative, S = 1

 Step 3: Determine exponent

Because its double precision  bias = 1023

Exponent = -1 + bias

 = -1 + 1023

 = 1022d

 = 01111111110b

IEEE 754 Conversion : Example 3

Sem11415_hkm

 Step4: Determine Significand

Drop the leading 1 of the significand

Then expand (padding) to 52 bits

IEEE 754 Conversion : Example 3

-1.1 x 2-1
 0.1

10000000000000000000000……..00

sign Exponent (11) Significand (52)

1 01111111110 1000000000000000000...00

-0.75

Converting Binary to Decimal Floating-Point

 What decimal number is represented by this single

precision float?

 Extract the values:

Sign (1 bit) Exponent(8 bit) Significand(23 bit)

1 10000001 01000000000000000000000

Remember: Biased notation  (-1)sign x (1 + Fraction) x 2 (exponent-bias)

Sign = 1

Exponent = 10000001b = 129d
The Fraction = -(1 + 0.25)

Significand
= (0 x 2-1) + (1 x 2-2) + (0 x 2-3)
= ¼ = 0.25

The number
= - (1.25 x 2 (exponent-bias))
= - (1.25 x 2 (129 – 127))
= - (1.25 x 22)
= - (1.25 x 4) = -5.0

Sem11415_hkm

Math basic … fraction number!
44

 .154 = 1/10 + 5/100 + 4/1000

 .1011 = 1/2 + 0/4 + 1/8 + 1/16

1.
1

101
 + 5.

1

102
 + 4.

1

103

1.
1

21
 + 0.

1

22
 + 1.

1

23
 + 1.

1

24

Decimal =
base 10

Binary =
base 2

Sem11415_hkm

Floating-Point Arithmetic

Floating-Point Addition Flows

Sem11415_hkm

Floating-

Point

ALU

47

0
10 1 0 1

Control

Small ALU

Big ALU

Sign Exponent Significand Sign Exponent Significand

Exponent

difference

Shift right

Shift left or right

Rounding hardware

Sign Exponent Significand

Increment or

decrement

0 10 1

Shift smaller

number right

Compare

exponents

Add

Normalize

Round

Block diagram of an arithmetic unit dedicated

to floating-point addition.

Sem11415_hkm

Decimal Floating-Point Addition

• Assume 4 decimal digits for significand and 2 decimal digits

for exponent

• Step 1: Align the decimal point of the number that has the smaller

exponent

• Step 2: Add the significand

• Step 3: Normalize the sum

• check for overflow/underflow of the exponent after

normalisation

• Step 4: Round the significand

• If the significand does not fit in the space reserved for

it, it has to be rounded off

• Step 5: Normalize it (if need be)

Sem11415_hkm

A) Decimal Floating-Point Addition

• Step 1: Align the decimal point of the number that has the

smaller exponent

• Step 2: add the significand

Example: 9.999d x 101 + 1.610d x 10-1

Make 1.610d x 10-1 to 101

-1 + x = 1  x = 2  move 2 to left
 0.0161d x 101

 9.9990 x 101

+ 0.0161d x 101

 10.0151 x 101

Sem11415_hkm

A) Decimal Floating-Point Addition

• Step 3: Normalize the sum

• Step 4: Round the significand (to 4 decimal digits for

significand)

•

• Step 5: Normalize it (if need be)

Example: 9.999d x 101 + 1.610d x 10-1

10.0151 x 101  1.00151 x 102

1.00151 x 102  1.0015 x 102

No need as its normalized

Sem11415_hkm

B) Binary Floating-Point Addition

• Convert the numbers to binary

• Step 1: Align the decimal point of the number that has the

smaller exponent

0.5  0.10b x 20  1.0b x 2-1

Example: 0.5d + (-0.4375d)

-0.4375  -0.0111b x 20  -1.11b x 2-2

Make 1.11b x 2-2 to 2-1

-2 + x = -1  x = 1  move 1 to left
- 0.111b x 2-1

Sem11415_hkm

B) Binary Floating-Point Addition

• Step 2: add the significand

• Step 3: Normalize the sum

• Step 4: Round the significand (to 4 decimal digits for

significand)

• Step 5: Normalize it (if need be)

 1.000 x 2-1

+ -0.111 x 2-1

Example: 0.5d + (-0.4375d)

0.001 × 2-1  1.0000 × 2-4

Fits in the 4 decimal digits

No need as its normalized

 1.000 x 2-1

− 0.111 x 2-1

 0.001 × 2-1

Sem11415_hkm

Floating-Point Multiplication Flows

Sem11415_hkm

A) Floating-Point Multiplication (decimal)
55

• Assume 4 decimal digits for significand and 2 decimal digits

for exponent

• Step 1: Add the exponent of the 2 numbers

• Step 2: Multiply the significands

Example: (1.110d x 1010) x (9.200d x 10-5)

10 + (-5) = 5 If biased is considered  10 + (-5) + 127 = 132

 9.200
 x 1.110

 92000
 9200
 9200

10.212000

 10.212000 10.2120 x 105

Sem11415_hkm

A) Floating-Point Multiplication (decimal)

56

• Step 3: Normalize the product

• Step 4: Round the significand (4 decimal digits for

significand)

• Step 5: Normalize it (if need be)

• Step 6: Set the sign of the product

Example: (1.110d x 1010) x (9.200d x 10-5)

10.2120 x 105
 1.02120 x 106

1.0212 x 106

Still normalized

+1.0212 x 106

Sem11415_hkm

B) Floating-Point Multiplication (binary)

57

• Assume 4 binary digits for significand and 2 binary digits for

exponent

• Step 1: Add the exponent of the 2 numbers

• Step 2: Multiply the significands

-1 + (-2) = -3 If biased is considered  -1 + (-2) + 127 = 124

 1.110
 x 1.000

 1110000

-> 1.110000  1.110000 1.110000 x 2-3

Example: (1.000b x 2-1) x (-1.110b x 2-2)

Sem11415_hkm

B) Floating-Point Multiplication (binary)

58

• Step 3: Normalize the product

• Step 4: Round the significand (4 binary digits for

significand)

• Step 5: Normalize it (if need be)

• Step 6: Set the sign of the product

Example: (1.000b x 2-1) x (-1.110b x 2-2)

1.110000 x 2-3
 already normalized

1.1100 x 2-3

Still normalized

-1.1100b x 2-3
 -7/32 d

Sem11415_hkm

Accurate Arithmetic: Overflow & Underflow

 If a calculation exceeds the limits of the floating point
scheme  then CPU will flag this error.

 i.e. a +ve OR –ve exponent becomes too large to fit in
the exponent field:

 +ve exponent TOO LARGE ⇒ ‘overflow’

 -ve exponent TOO LARGE ⇒ ‘underflow’

If number is
too tiny to be

represented

Sem11415_hkm

Accurate Arithmetic : Truncation & Rounding

 Some number have infinite decimal points (the irrational

numbers)  1/3d = 0.3333333333

 Truncation is done to fit the decimal points into manageable

units.

 Truncation is where decimal values beyond the truncation point are

simply discarded and it can cause error in floating point calculations.

 Rounding :If you have a number such as 3.456 then if you have

to round this to 3 significant digits, the number becomes 3.46

 A small error called the rounding error has occurred

 ***Note : the CPU will not flag any error when truncation and

rounding occurs, as it is acting within its limits.  programmers

must assess if this will lead to significant errors

Sem11415_hkm

Summary

 Over the decades, computer arithmetic has become
largely standardized, greatly enhancing the portability of
programs.

 Two’s complement binary integer arithmetic is found in
every modern computer.

 And binary floating-point arithmetic is supported by the
IEEE 754 standard.

 Computer arithmetic is distinguished from paper-and-
pencil arithmetic by the constraints of limited
precision.

 ... may result in invalid operations through calculating
numbers larger or smaller than the predefined limits,
known as“overflow” or “underflow”

Sem11415_hkm

Module 2: Outline

Introduction

Fixed-Number Representation

Unsigned Numbers

Signed Numbers

Fixed-Number Arithmetic

Addition and Subtraction

Multiplication

Division

Floating-Point Representation

 IEEE-754 Floating-Point Standard

Floating-Point Arithmetic

Addition

Multiplication

Sem11415_hkm

End of Module 2

