

Module 2: Data Representation in Computer Systems

**BOOK: COMPUTER ORGANIZATION AND DESIGN,3ED, DAVID L.
PATTERSON AND JOHN L. HANNESSY, MORGAN KAUFMANN
PUBLISHERS**

Contents

- Introduction
- Fixed-Number Representation
 - Unsigned Numbers
 - Signed Numbers
- Fixed-Number Arithmetic
 - Addition and Subtraction
 - Multiplication
 - Division
- Floating-Point Representation
 - IEEE-754 Floating-Point Standard
- Floating-Point Arithmetic
 - Addition
 - Multiplication

Floating-Point Representation

Real Numbers

4

- Two's complement representation deal with signed integer values only.
- Without modification, these formats are not useful in scientific or business applications that deal with *real number* values.
- Floating-point representation solves this problem.

Floating Point Representation

- Floating point aids in the representation of very big or very small fixed point numbers.

10000000000

Fixed point

1.0×10^{10}

Floating point

976,000,000,000,000 $\rightarrow 9.76 \times 10^{14}$

0.000000000000976 $\rightarrow 9.76 \times 10^{-14}$

Floating Point Numbers

6

Significand/**Fraction**/Mantissa

Exponent

736.637 x **10⁶⁸**

Base/**radix**

Fraction and
Exponent can be
+ve or -ve.

Decimal numbers use the
radix 10, binary use 2

Normalized and Unnormalized

- In generalized normalization (in *general mathematics*), a floating point number is said to be normalized if the **number after the radix point is a non-zero value**.
- Un-normalized floating number is when the number after the radix point is '0'.
- Example:

number after the radix point is a non-zero value.

0.1234 x 10¹⁶

→ normalized

0.0011 x 10¹⁵

→ unnormalized

11.0123 x 10¹¹

→ unnormalized

0.133 x 10⁵

→ normalized

Normalization Process

- Normalization is the process of deleting the zeroes until a non-zero value is detected.
- Example : Move radix point to the right (in this case 2 points)

$$0.00234 \times 10^4 \rightarrow 0.234 \times 10^{4-2} \rightarrow 0.234 \times 10^2$$

 Move radix point to the left (in this case 2 points)

$$12.0024 \times 10^4 \rightarrow 0.120024 \times 10^{4+2} \rightarrow 0.120 \times 10^6$$

A rule of thumb:

moving the radix point **to the right** \rightarrow **subtract exponent**

moving the radix point **to the left** \rightarrow **add exponent**

Example

Decimal

$$24.89 \times 10^{89}$$

$$\rightarrow 0.249 \times 10^{89+2} \rightarrow 0.249 \times 10^{91}$$

Binary

$$11.00110 \times 2^{-110011}$$

$$\rightarrow 0.1100110 \times 2^{(-110011)+(010)}$$

$$\rightarrow 0.1100110 \times 2^{-110001}$$

$$0.00011011 \times 2^{1001}$$

$$\rightarrow 0.11011 \times 2^{(1001)-(0011)}$$

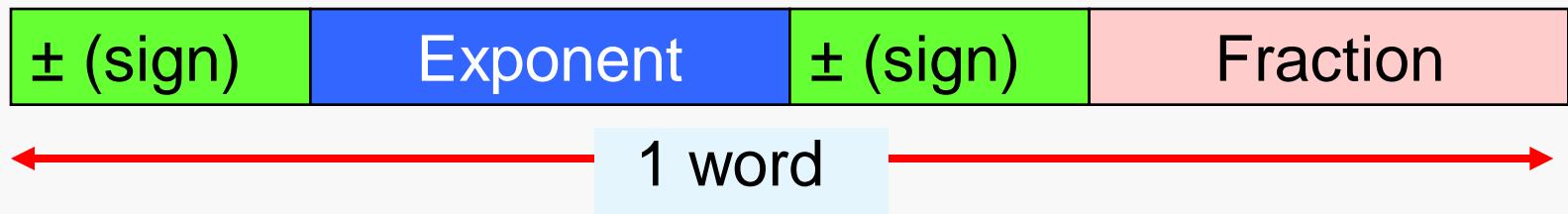
$$\rightarrow 0.11011 \times 2^{0110}$$

Floating-Point Format for Binary Numbers

- The general form of floating-point is:

$$\pm 0.\text{Fraction} \times \text{Base}^{\pm \text{exponent}, e'}$$

- In binary:



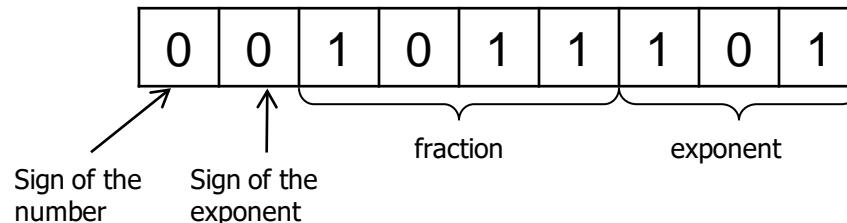
Example: Non-biased exponent

9 bit-hypothetical word

- the first bit is used for the sign of the number,
- the second bit for the sign of the exponent,
- the next four bits for the fraction, and
- the next three bits for the exponent

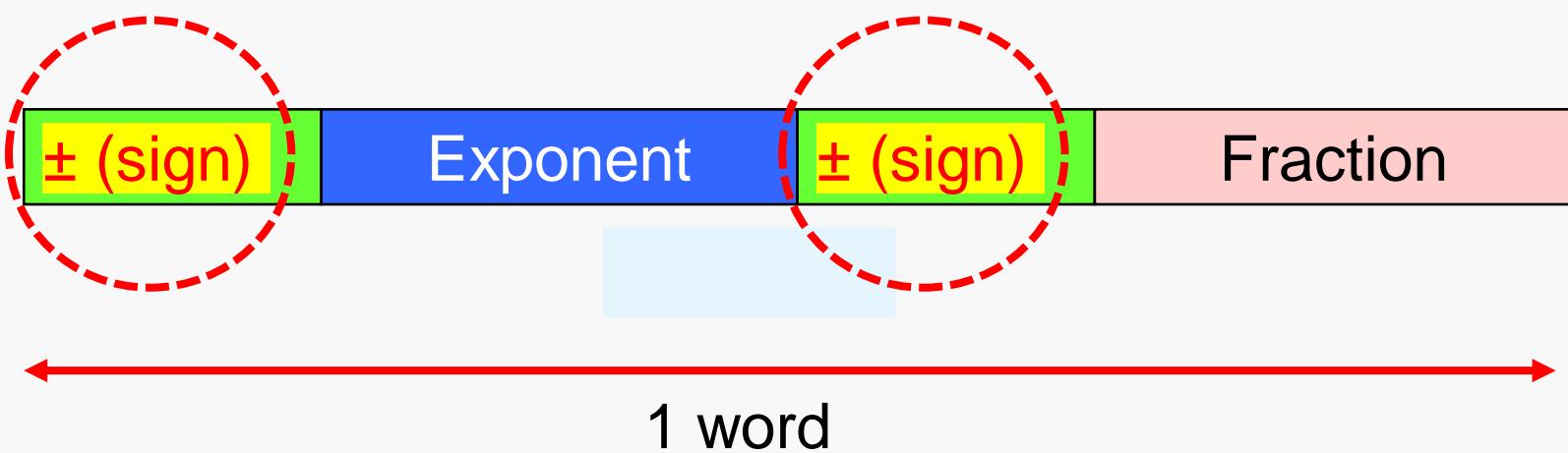
$$\begin{aligned}(54.75)_{10} &= (110110 .11)_2 = (1.1011011)_2 \times 2^5 \\ &\cong (1.1011)_2 \times (101)_2\end{aligned}$$

We have the representation as



Biased Exponent

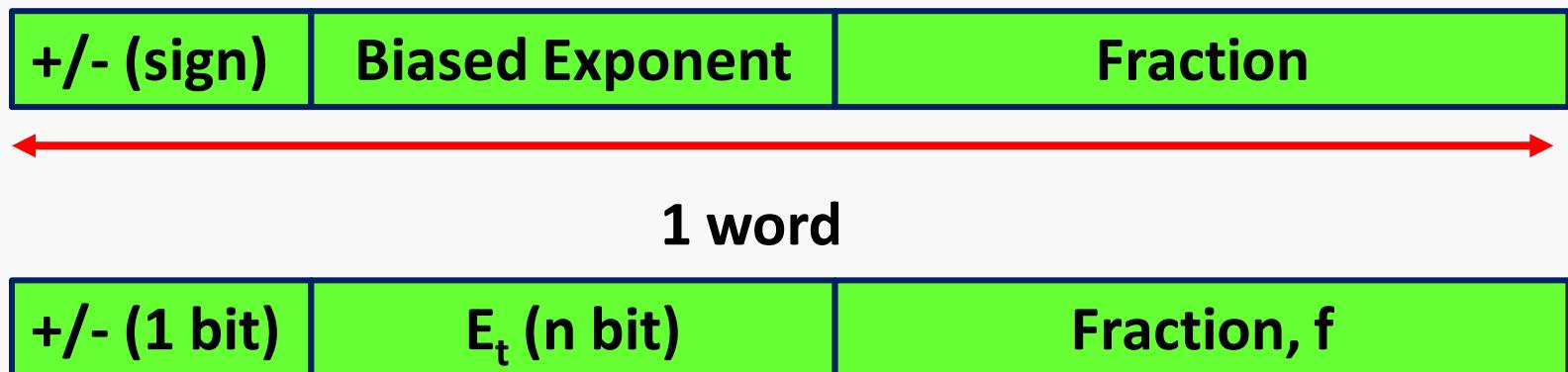
- The 2 signs bit are not good for design as it incurs extra cost. → need new representation



Biased Exponent

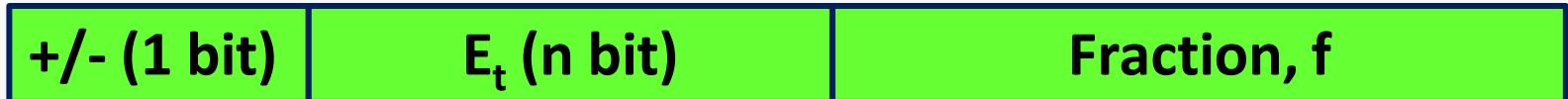
13

- A new value to represent the exponent without the sign bit is introduced
 - This will eliminate the sign for the exponent value **that is the exponent will be positive.** (indicative)



Biased Exponent

14



Biased value, $b = 2^{n-1}$

Normalized exponent, $e' = E_t - b$

Biased exponent, $E_t = e' + b$

Where,
 E_t = biased exponent
 n = bits of exponent format (i.e.
the word format)

This is used unless the IEEE standard is mentioned – then is a different calculation

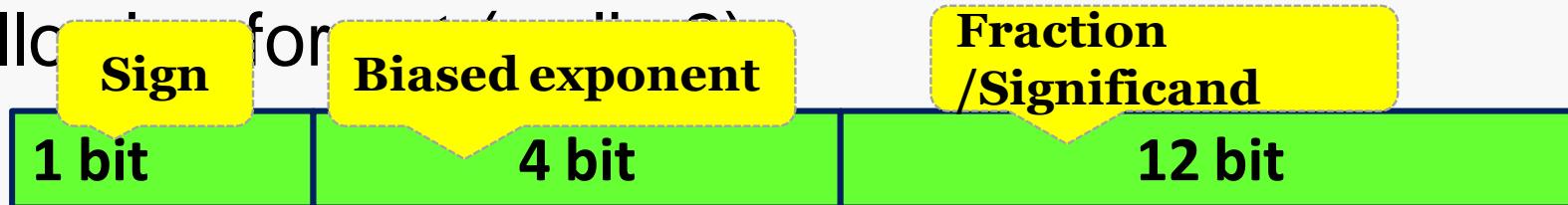
Conversion to Floating Point Number

- The steps:
 - Change to binary (if given decimal number)
 - Normalized the number
 - Change the number to biased exponent
 - Form the word (3 fields of a given format)

Example 3

16

- Transform **-33.625** to floating point word using the following format



- Step 1 : Change 33.625 to binary

This is the given word format

33 → 0100001

33.625
= 0100001.101

0.625 × 2 = 1.25 → 1
0.25 × 2 = 0.5 → 0
0.5 × 2 = 1.0 → 1
0.0

Example 3

- Step 2 : Normalized the number

Normalized exponent, e'

0100001.101_2

$\rightarrow 0.100001101_2 \times 2^{0110}$

- Step 3: Change the number to biased exponent

Biased value, $b = 2^{n-1} = 2^{4-1} = 8_{10} = 1000_2$

Biased exponent, $E_t = e' + b = 0110 + 1000 = 1110$

$0.100001101_2 \times 2^{0110}$

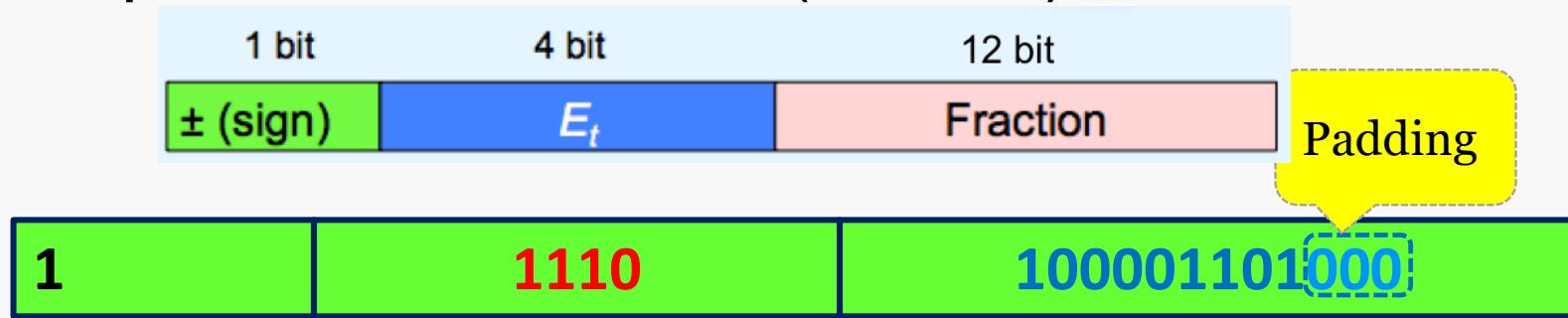
$\rightarrow 0.100001101_2 \times 2^{1110}$

Example 3

0.100001101 x 2¹¹¹⁰

-33.625

- Step 4 : Form the word (3 fields)



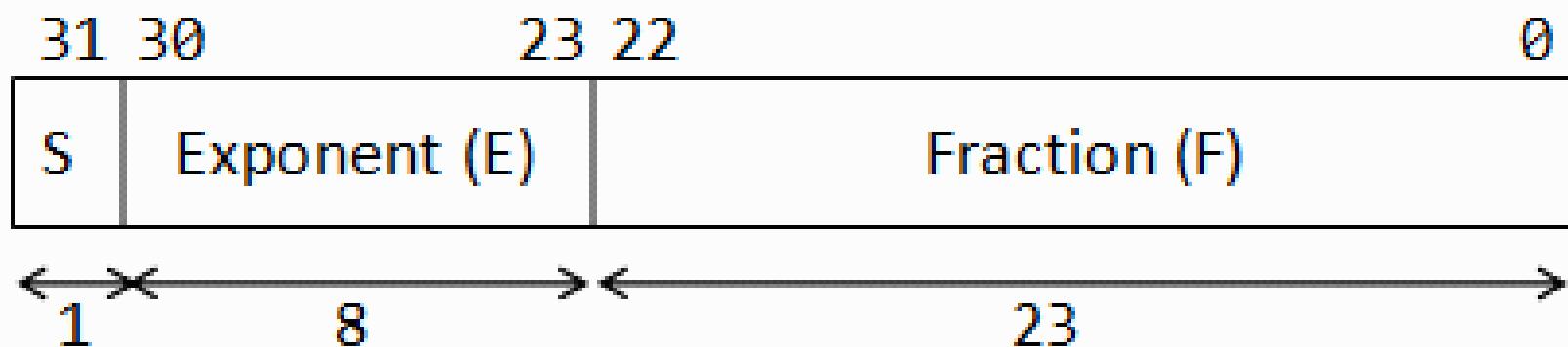
Rule of thumb:

- the biased exponent is always padded to the left
- the Fraction is always padded to the right

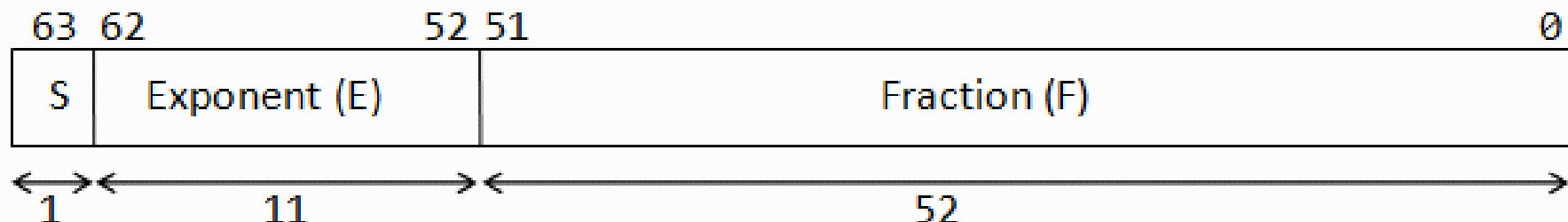
FLOATING POINT STANDARD

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE 754 Floating-Point Standard



32-bit Single-Precision Floating-point Number



64-bit Double-Precision Floating-point Number

IEEE 754 Floating-Point Standard

- Used in virtually every computer invented since 1980
- To pack more bits into the **significand**, the leading 1 bit of normalized binary number is made implicit
 - Original: $1.\text{xxxxxxxx}_{\text{two}} \times 2^{\text{yyy}} \rightarrow (-1)^{\text{s}} \times \text{F} \times 2^{\text{E}}$
 - Modified: $(-1)^{\text{s}} \times (1 + \text{Fraction}) \times 2^{\text{E}}$
 - Significand: 1 plus the fraction
 - Single precision: 24 bits
 - Double precision: 53 bits

The 1 in $(1 + \text{Fraction})$ is made implicit
→ to pack more bits into the significand

Normalized Scientific Notation in IEEE 754

- In IEEE standard for normalization (used in computers), a floating point number is said to be normalized if there **is** only a single non-zero before the radix point.
- Example:

there is only a single non-zero before the radix point.

123.456

→ normalized

1.23456×10^2

1010.1011_B

→ normalized

1.0101011×2^{11}

Biased Notation in IEEE 754

- The desired notation must represent the most negative exponent as 00...00_{two} and the most positive as 11...11_{two}
 - IEEE 754 uses a bias of 127 for single precision (and 1023 for double precision)
 - $-1 \rightarrow -1+127_{ten} = 0111\ 1110_{two}$
 - $+1 \rightarrow 1+127_{ten} = 1000\ 0000_{two}$

Bias

→ In single precision is **127**

→ In double precision **1023**

Biased Notation in IEEE 754

single: 8 bits

double: 11 bits

single: 23 bits

double: 52 bits

S	Exponent	Fraction
---	----------	----------

$$x = (-1)^S \times (1 + \text{Fraction}) \times 2^{(\text{Exponent} - \text{Bias})}$$

- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single precision: Bias = 127;
 - Double precision: Bias = 1023

Excess- k representation

- Yet another way to represent numbers in binary.
- For N bit numbers, k is $2^{N-1}-1$
- So for 4-bit integers, k is 7
- The value of each bit string is its *unsigned value* minus k . (i.e. ‘*unsigned value*’ – k)

Excess- k representation: 4-bit excess 7

"Sliding ruler"

	Unsigned	Excess- k	
0000.....	0	-7	(i.e. 0–7)
0001.....	1	-6	(i.e. 1–7)
0010.....	2	-5	(i.e. 2–7)
0011.....	3	-4	(i.e. 3–7)
0100.....	4	-3	(i.e. 4–7)
0101.....	5	-2	(i.e. 5–7)
0110.....	6	-1	(i.e. 6–7)
0111.....	7	0	(i.e. 7–7)
1000.....	8	1	(i.e. 8–7)
1001.....	9	2	(i.e. 9–7)
1010.....	10	3	(i.e. 10–7)
1011.....	11	4	(i.e. 11–7)
1100.....	12	5	(i.e. 12–7)
1101.....	13	6	(i.e. 13–7)
1110.....	14	7	(i.e. 14–7)
1111.....	15	8	(i.e. 15–7)

$k = 7$

Excess- k representation: Example

- Convert **-14** (decimal) to 8-bit excess- k
- What is **k** ?
 $k = 2^{N-1} - 1 = 2^{8-1} - 1 = 127$
- Find the number **u** such that $u - k = -14$.
 $u - 127 = -14$, implies **$u = 113$**
- Convert **u** to unsigned binary:
001110001

8-bit ; excess-127

8 bit excess-127

Binary value	Excess-127 interpretation	Unsigned interpretation
00000000	-127	0
00000001	-126	1
:	:	:
01111111	0	127
10000000	1	128
10000001	2	129
:	:	:
11111111	+128	255

8-bit ; excess-127

e		Meaning
0000 0000		Reserved
0000 0001		-126_{10}
0000 0010		-125_{10}
0111 1111		0_{10}
1111 1110		127_{10}
1111 1111		Reserved

IEEE FLOATING-POINT FORMAT

single: 8 bits

double: 11 bits

single: 23 bits

double: 52 bits

S	Exponent	Fraction
---	----------	----------

$$x = (-1)^s \times (1 + \text{Fraction}) \times 2^{(\text{Exponent} - \text{Bias})}$$

- S: sign bit (0 \Rightarrow non-negative, 1 \Rightarrow negative)
- Normalize significand: $1.0 \leq |\text{significand}| < 2.0$
 - Significand is Fraction with the “1.” restored
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)

SINGLE-PRECISION RANGE

- Exponents 00000000 and 11111111 are reserved
- Smallest value
 - Exponent: 00000001
⇒ actual exponent = $1 - 127 = -126$
 - Fraction: 000...00 ⇒ significand = 1.0
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110 $= 254_{10}$
⇒ actual exponent = $254 - 127 = +127$
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

DOUBLE-PRECISION RANGE

- Exponents 0000...00 and 1111...11 are reserved
- Smallest value
 - Exponent: 00000000001
⇒ actual exponent = $1 - 1023 = -1022$
 - Fraction: 000...00 ⇒ significand = 1.0
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 11111111110
⇒ actual exponent = $2046 - 1023 = +1023$
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

IEEE 754 Conversion

- To convert a decimal number to single (or double) precision floating point:
 - Step 1: Normalize
 - Step 2: Determine Sign Bit
 - Step 3: Determine exponent
 - Step 4: Determine Significand

IEEE 754 Conversion : Example 1

- Convert 10.4_d to single precision floating point.
- Step 1: Normalize

10 → 00001010

For continuous results, take the 1st pattern before it repeats itself

$$0.4 \times 2 = 0.8 \rightarrow 0$$

$$0.8 \times 2 = 1.6 \rightarrow 1$$

$$0.6 \times 2 = 1.2 \rightarrow 1$$

$$0.2 \times 2 = 0.4 \rightarrow 0$$

$$0.4 \times 2 = 0.8 \rightarrow 0$$

$$0.8 \times 2 = 1.6 \rightarrow 1$$

$$0.4 = .0110$$

$$10.4 = 1010.0110 \times 2^0$$

$$\rightarrow 1.0100110 \times 2^3$$

IEEE 754 Conversion : Example 1

- **Step 2: Determine Sign Bit (S)**
 - Because (10.4) is positive, $S = 0$

→ 1.0100110×2^3

- **Step 3: Determine exponent**
 - Because its single precision → bias = 127
 - Exponent
 - = $3 + \text{bias}$
 - = $3 + 127$
 - = 130_d
 - = $1000\ 0010_b$

IEEE 754 Conversion : Example 1

- Step4: Determine Significand

- Drop the leading 1 of the significand

$$1.0100110 \times 2^3 \rightarrow 0100110$$

- Then expand (padding) to 23 bits

0100110000000000000000000

sign	Exponent	Significand
0	10000010	0100110000000000000000000

Exponent = **1000 0010_b**

IEEE 754 Conversion : Example 2

- Convert -0.75_d to single precision floating point.
- Step 1: Normalize**

$$0.75 \times 2 = 1.5 \rightarrow 1$$

$$0.5 \times 2 = 1.0 \rightarrow 1$$

$$0.0 \times 2 = 0 \rightarrow 0$$

$$-0.75 = -0.11$$

$$\rightarrow -0.11 \times 2^0$$

$$\rightarrow -1.1 \times 2^{-1}$$

IEEE 754 Conversion : Example 2

- **Step 2: Determine Sign Bit (S)**
 - Because (-0.75) is negative, $S = 1$
- **Step 3: Determine exponent**
 - Because its single precision → bias = 127
 - Exponent $= -1 + \text{bias}$ $= -1 + 127$ $= 126_d$ $= 0111110_b$

IEEE 754 Conversion : Example 2

- Step4: Determine Significand
 - Drop the leading 1 of the significand

-1.1×2^{-1}

$\rightarrow 0.1$

- Then expand (padding) to 23 bits

1000000000000000000000000

sign	Exponent	Significand
1	01111110	1000000000000000000000000

IEEE 754 Conversion : Example 3

- Convert -0.75_d to *double precision* floating point.
- Step 1: Normalize**

$$0.75 \times 2 = 1.5 \rightarrow 1$$

$$0.5 \times 2 = 1.0 \rightarrow 1$$

$$0.0 \times 2 = 0 \rightarrow 0$$

$$-0.75 = -0.11$$

$$\rightarrow -0.11 \times 2^0$$

$$\rightarrow -1.1 \times 2^{-1}$$

IEEE 754 Conversion : Example 3

- **Step 2: Determine Sign Bit (S)**
 - Because (-0.75) is negative, $S = 1$
- **Step 3: Determine exponent**
 - Because its double precision → bias = 1023
 - Exponent = $-1 + \text{bias}$
$$= -1 + 1023$$
$$= 1022_d$$
$$= 0111111110_b$$

IEEE 754 Conversion : Example 3

- Step4: Determine Significand

- Drop the leading 1 of the significand

-1.1×2^{-1}

→ 0.1

- Then expand (padding) to 52 bits

10000000000000000000000000000000.....00

-0.75

sign	Exponent (11)	Significand (52)
1	0111111110	10000000000000000000000000000000...00

Converting Binary to Decimal Floating-Point

Remember: Biased notation $\rightarrow (-1)^{\text{sign}} \times (1 + \text{Fraction}) \times 2^{(\text{exponent-bias})}$

- What decimal number is represented by this single precision float?

Sign (1 bit)	Exponent(8 bit)	Significand(23 bit)
1	10000001	01000000000000000000000

- Extract the values:

Sign = 1

Exponent = 10000001_b = 129_d

Significand

$$= (0 \times 2^{-1}) + (1 \times 2^{-2}) + (0 \times 2^{-3})$$

$$= \frac{1}{4} = 0.25$$

The Fraction = -(1 + 0.25)

The number

$$= - (1.25 \times 2^{(\text{exponent-bias})})$$

$$= - (1.25 \times 2^{(129 - 127)})$$

$$= - (1.25 \times 2^2)$$

$$= - (1.25 \times 4) = -5.0$$

Math basic ... fraction number!

44

- $.154 = 1/10 + 5/100 + 4/1000$

Decimal =
base 10

$$1 \cdot \frac{1}{10^1} + 5 \cdot \frac{1}{10^2} + 4 \cdot \frac{1}{10^3}$$

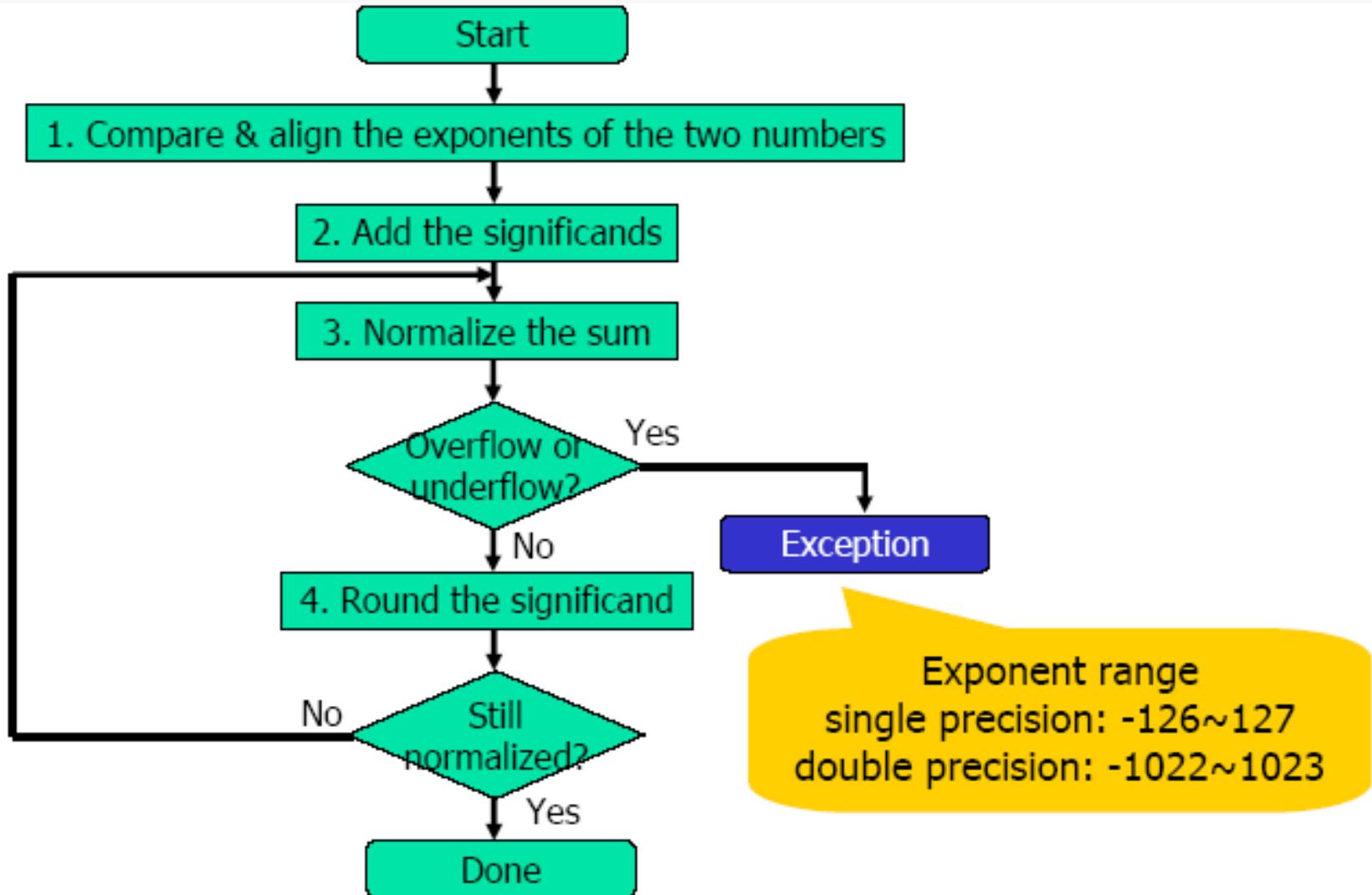
- $.1011 = 1/2 + 0/4 + 1/8 + 1/16$

Binary =
base 2

$$1 \cdot \frac{1}{2^1} + 0 \cdot \frac{1}{2^2} + 1 \cdot \frac{1}{2^3} + 1 \cdot \frac{1}{2^4}$$

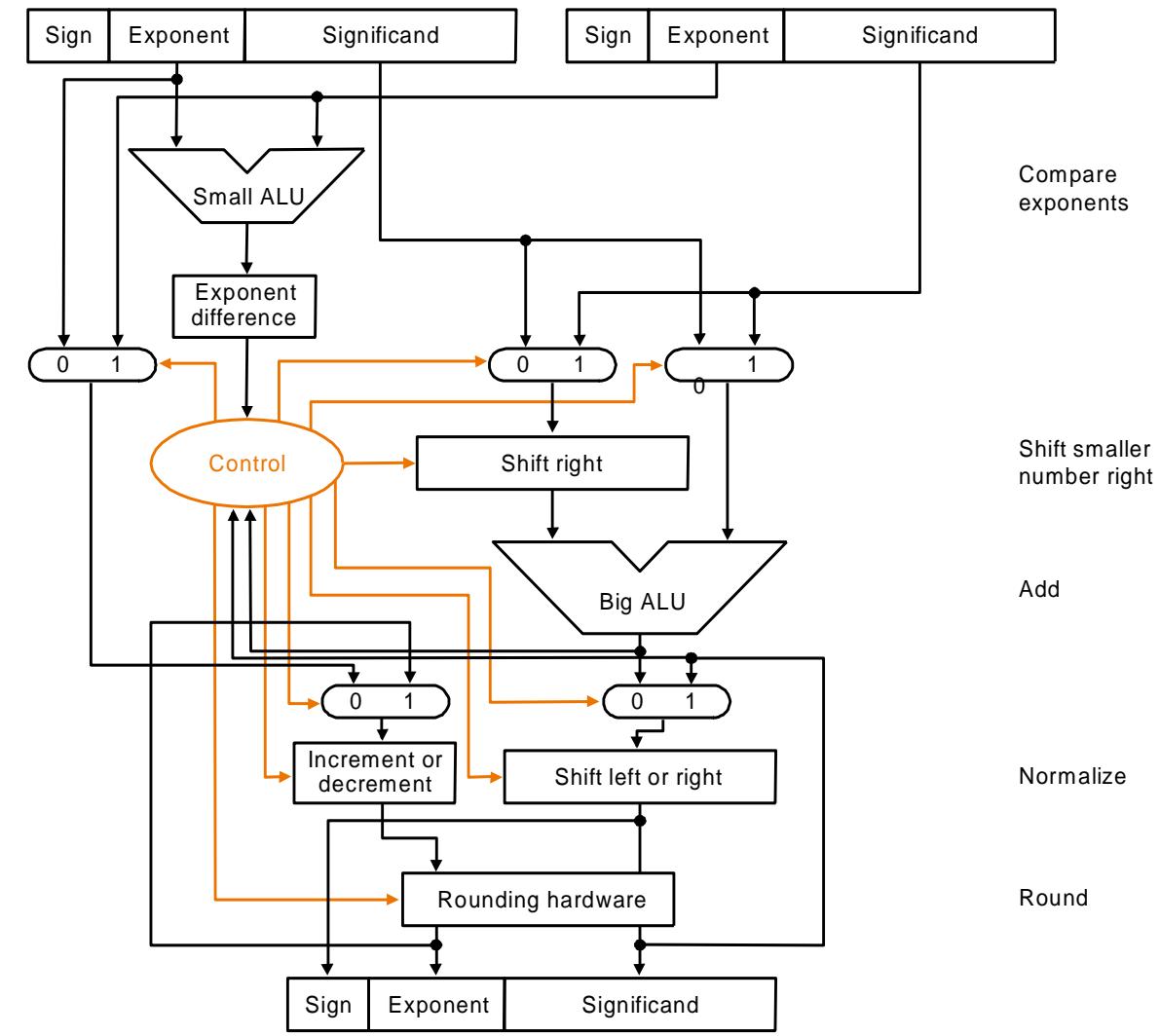
Floating-Point Arithmetic

Floating-Point Addition Flows



Floating- Point ALU

Block diagram of an arithmetic unit dedicated to floating-point addition.



Decimal Floating-Point Addition

- Assume 4 decimal digits for **significand** and 2 decimal digits for **exponent**
 - Step 1: Align the decimal point of the number that has the smaller exponent
 - Step 2: Add the significand
 - Step 3: Normalize the sum
 - check for overflow/underflow of the exponent after normalisation
 - Step 4: Round the significand
 - If the significand does not fit in the space reserved for it, it has to be rounded off
 - Step 5: Normalize it (if need be)

A) Decimal Floating-Point Addition

Example: $9.999_d \times 10^1 + 1.610_d \times 10^{-1}$

- **Step 1:** Align the decimal point of the number that has the smaller exponent

Make $1.610_d \times 10^{-1}$ to 10^1

$\rightarrow -1 + x = 1 \rightarrow x = 2 \rightarrow$ move 2 to left
 $\rightarrow 0.0161_d \times 10^1$

- **Step 2:** add the significand

$$\begin{array}{r} 9.9990 \times 10^1 \\ + 0.0161_d \times 10^1 \\ \hline 10.0151 \times 10^1 \end{array}$$

A) Decimal Floating-Point Addition

Example: $9.999_d \times 10^1 + 1.610_d \times 10^{-1}$

- **Step 3:** Normalize the sum

$$10.0151 \times 10^1 \rightarrow 1.00151 \times 10^2$$

- **Step 4:** Round the significand (to 4 decimal digits for significand)

$$1.00151 \times 10^2 \rightarrow 1.0015 \times 10^2$$

- **Step 5:** Normalize it (if need be)

No need as its normalized

B) Binary Floating-Point Addition

Example: $0.5_d + (-0.4375_d)$

- Convert the numbers to binary

$$0.5 \rightarrow 0.10_b \times 2^0 \rightarrow 1.0_b \times 2^{-1}$$

$$-0.4375 \rightarrow -0.0111_b \times 2^0 \rightarrow -1.11_b \times 2^{-2}$$

- Step 1:** Align the decimal point of the number that has the smaller exponent

Make $1.11_b \times 2^{-2}$ to 2^{-1}

$$\rightarrow -2 + x = -1 \rightarrow x = 1 \rightarrow \text{move 1 to left}$$

$$\rightarrow -0.111_b \times 2^{-1}$$

B) Binary Floating-Point Addition

Example: $0.5_d + (-0.4375_d)$

- Step 2: add the significand

$$\begin{array}{r} 1.000 \times 2^{-1} \\ + -0.111 \times 2^{-1} \\ \hline \end{array}$$

$$\begin{array}{r} 1.000 \times 2^{-1} \\ - 0.111 \times 2^{-1} \\ \hline \end{array}$$

0.001 $\times 2^{-1}$

- Step 3: Normalize the sum

$$0.001 \times 2^{-1} \rightarrow 1.0000 \times 2^{-4}$$

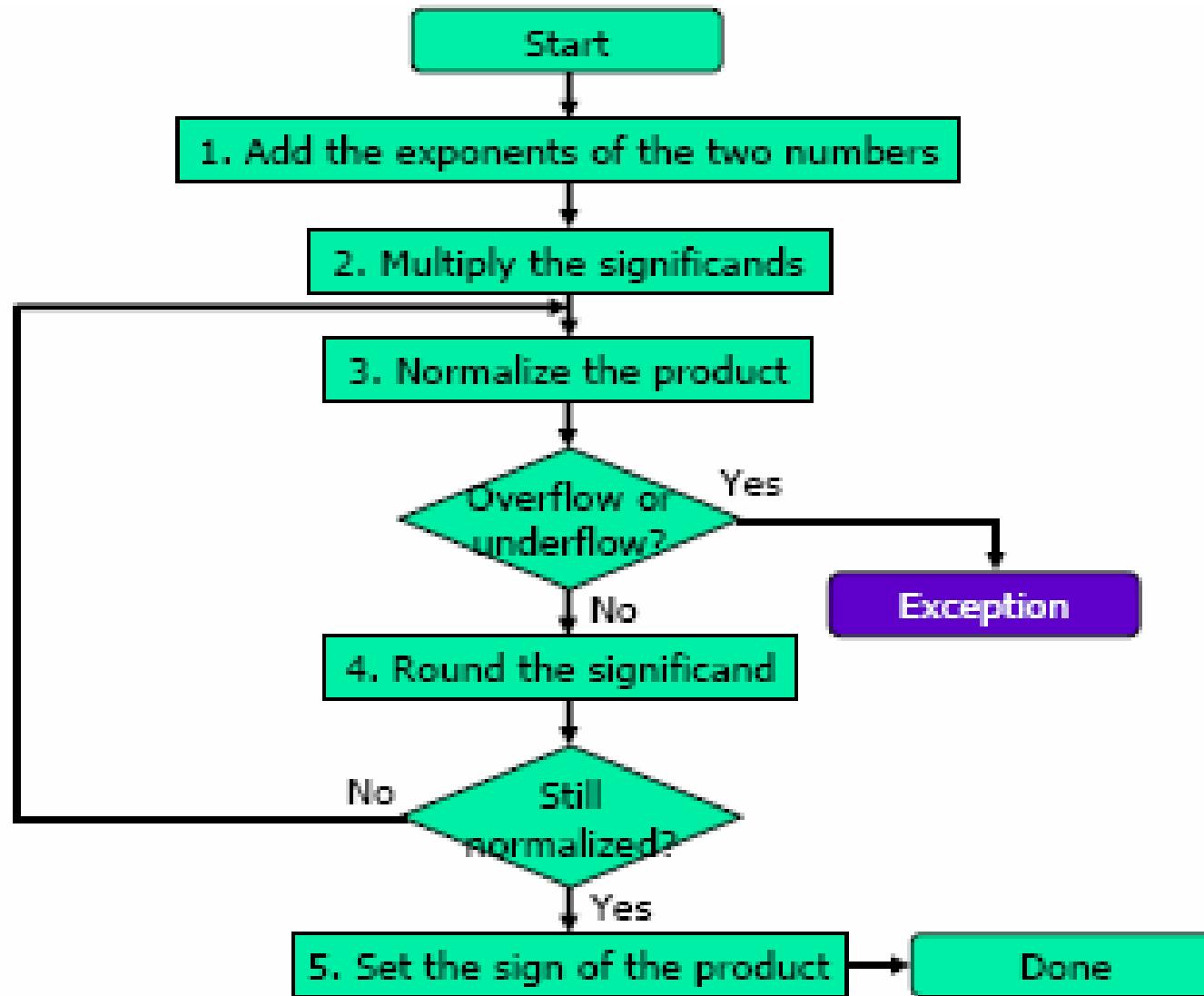
- Step 4: Round the significand (to 4 decimal digits for significand)

Fits in the 4 decimal digits

- Step 5: Normalize it (if need be)

No need as its normalized

Floating-Point Multiplication Flows



A) Floating-Point Multiplication (decimal)

Example: $(1.110_d \times 10^{10}) \times (9.200_d \times 10^{-5})$

- Assume 4 decimal digits for **significand** and 2 decimal digits for **exponent**
- Step 1: Add the exponent of the 2 numbers
 $10 + (-5) = 5$ If biased is considered $\rightarrow 10 + (-5) + 127 = 132$
- Step 2: Multiply the significands

$$\begin{array}{r} 9.200 \\ \times 1.110 \\ \hline 92000 \\ 9200 \\ 9200 \\ \hline 10.212000 \end{array}$$

$\rightarrow 10.212000 \rightarrow 10.2120 \times 10^5$

A) Floating-Point Multiplication (decimal)

Example: $(1.110_d \times 10^{10}) \times (9.200_d \times 10^{-5})$

- Step 3: Normalize the product

$$10.2120 \times 10^5 \rightarrow 1.02120 \times 10^6$$

- Step 4: Round the significand (4 decimal digits for significand)

$$1.0212 \times 10^6$$

- Step 5: Normalize it (if need be)

Still normalized

- Step 6: Set the sign of the product

$$+1.0212 \times 10^6$$

B) Floating-Point Multiplication (binary)

Example: $(1.000_b \times 2^{-1}) \times (-1.110_b \times 2^{-2})$

- Assume 4 binary digits for **significand** and 2 binary digits for **exponent**
- Step 1: Add the exponent of the 2 numbers
 $-1 + (-2) = -3$ If biased is considered $\rightarrow -1 + (-2) + 127 = 124$
- Step 2: Multiply the significands

$$\begin{array}{r} 1.110 \\ \times 1.000 \\ \hline 1110000 \\ \rightarrow 1.110000 \end{array}$$

$$\rightarrow 1.110000 \rightarrow 1.110000 \times 2^{-3}$$

B) Floating-Point Multiplication (binary)

Example: $(1.000_b \times 2^{-1}) \times (-1.110_b \times 2^{-2})$

- Step 3: Normalize the product

$1.110000 \times 2^{-3} \rightarrow$ already normalized

- Step 4: Round the significand (4 binary digits for significand)

1.1100×2^{-3}

- Step 5: Normalize it (if need be)

Still normalized

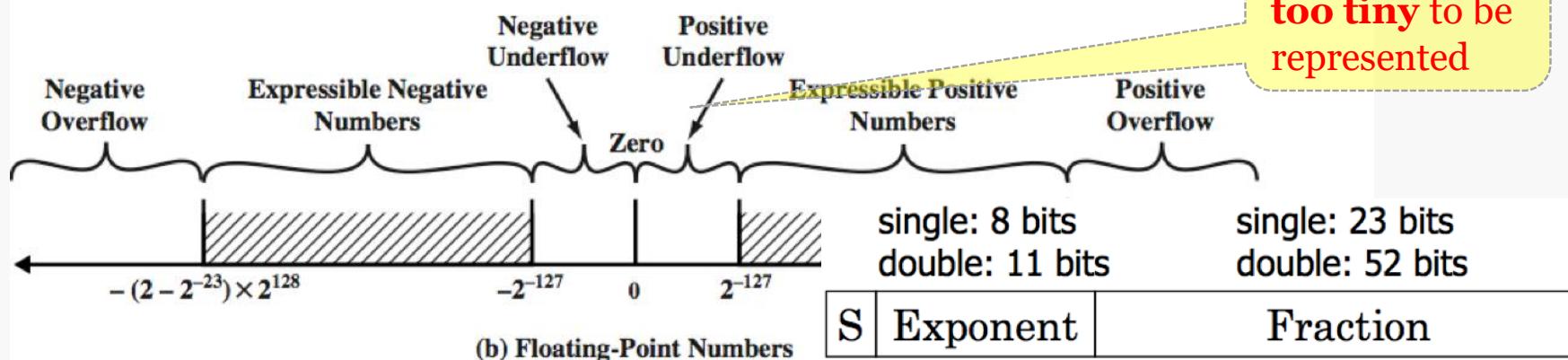
- Step 6: Set the sign of the product

$-1.1100_b \times 2^{-3}$

$\rightarrow -7/32_d$

Accurate Arithmetic: Overflow & Underflow

- If a calculation exceeds the limits of the floating point scheme → then CPU will flag this error.



- i.e. a +ve OR -ve exponent becomes too large to fit in the exponent field:
 - +ve** exponent TOO LARGE ⇒ **'overflow'**
 - ve** exponent TOO LARGE ⇒ **'underflow'**

Accurate Arithmetic : Truncation & Rounding

- Some number have infinite decimal points (the irrational numbers) → $1/3_d = 0.3333333333$
- **Truncation** is done to fit the decimal points into *manageable* units.
 - Truncation is where decimal values beyond the truncation point are **simply discarded** and it can cause error in floating point calculations.
- **Rounding** :If you have a number such as 3.456 then if you have to round this to 3 significant digits, the number becomes 3.46
 - A small error called the rounding error has occurred
- *****Note** : the CPU will not flag any error when truncation and rounding occurs, as it is acting within its limits. → programmers must assess if this will lead to significant errors

Summary

- Over the decades, computer arithmetic has become largely standardized, greatly enhancing the portability of programs.
- **Two's complement binary integer** arithmetic is found in every modern computer.
- And **binary floating-point** arithmetic is supported by the **IEEE 754** standard.
- Computer arithmetic is **distinguished** from ***paper-and-pencil arithmetic*** by the constraints of ***limited precision***.
- ... may result in invalid operations through calculating numbers larger or smaller than the predefined limits, known as "**overflow**" or "**underflow**"

Module 2: Outline

- Introduction
- Fixed-Number Representation
 - Unsigned Numbers
 - Signed Numbers
- Fixed-Number Arithmetic
 - Addition and Subtraction
 - Multiplication
 - Division
- Floating-Point Representation
 - IEEE-754 Floating-Point Standard
- Floating-Point Arithmetic
 - Addition
 - Multiplication

End of Module 2