

INSPIRING CREATIVE AND INNOVATIVE MINDS

யயய.utm.my

- In computer science, we study different types of computer languages, such as Basic, Pascal, and C++.
- We will discuss a type of a language that can be recognized by special types of machines.

யயய.utm.my

A deterministic finite automaton (pl. automata) is a mathematical model of a machine that accepts languages of some alphabet.

யயய.utm.my

Deterministic Finite Automaton is a quintuple M= { S, I, q₀, f_s, F}

where,

S is a finite nonempty set of states

I is the input alphabet (a finite nonempty set of symbols)

q₀ is the initial state

f_s is the state transition function

F is the set of final states, subset of S.

யயய.utm.my

Let $M=\{\{q_0,q_1,q_2\},\{0,1\},q_0,f_s,\{q_2\}\}\}$ where f_s is defined as follows:

$$f_s(q_0,0) = q_1, \quad f_s(q_1,1) = q_2$$

 $f_s(q_0,1) = q_0, \quad f_s(q_2,0) = q_0$
 $f_s(q_1,0) = q_2, \quad f_s(q_2,1) = q_1$

Note that for M:

$$S=\{q_0,q_1,q_2\}$$
, $I=\{0,1\}$, $F=\{q_2\}$ q_0 is the initial state

யயய.utm.my

The state transition function of a DFA is often described by means of a table, called a transition table.

f _s	0	1
q_0	q_1	q_0
q_1	q_2	q_2
q_2	q_0	q_1

யயய.utm.my

The transition diagram of this DFA is,

Initial state with incoming unlabeled arrow not originating from any vertex

prepared by Razana Alwee

Each state represented by a small circle labeled with the state

Final state with a double circle

யயய.utm.my

Let $M=(\{q_0,q_1,q_2,q_3\},\{a,b\},q_0,f_s,\{q_1,q_2\})$ where f_s is given by the table

f _s	а	b
q_0	q_0	q_1
q_1	q_0	q_2
q_2	q_0	q_3
q_3	q_3	q_3

www.utm.my

The transition diagram of this DFA is,

யயய.utm.my

- Let $M = \{ S, I, q_0, f_s, F \}$ be a DFA and w is an input string,
- w is said to be accepted by M if $f_s^*(q_0, w) \in F$
- f_s* extended transition function for M

www.utm.my

w = abb

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{b} q_2$$
 accepted by M

www.utm.my

w= abba

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_0$$

not accepted by M

யயய.utm.my

What are the states of M?

 q_0,q_1,q_2

Write the set of input symbols.

 $I = \{0, 1\}$

Which is the initial state?

 q_0

www.utm.my

Write the set of final states.

$$F = \{q_2\}$$

Write the transition table for this DFA

www.utm.my

The transition table, fs

f _s	0	1
q_0	q_0	q_1
q_1	q_2	q_1
q_2	q_0	q_1

www.utm.my

Which of the strings are accepted by M?

0111010, 00111, 111010,

0100, 1110

www.utm.my

0111010

$$q_0 \xrightarrow{0} q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_1 \xrightarrow{0} q_1 \xrightarrow{0} q_2 \xrightarrow{1} q_1 \xrightarrow{0} q_2$$

accepted by M

www.utm.my

00111

$$q_0 \xrightarrow{0} q_0 \xrightarrow{0} q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_1 \xrightarrow{1} q_1$$

not accepted by M

www.utm.my

111010

$$q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_1 \xrightarrow{1} q_1 \xrightarrow{0} q_2 \xrightarrow{1} q_1 \xrightarrow{0} q_2$$

accepted by M

www.utm.my

0100

$$q_0 \xrightarrow{0} q_0 \xrightarrow{1} q_1 \xrightarrow{0} q_2 \xrightarrow{0} q_0$$

not accepted by M

www.utm.my

1110

$$q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_1 \xrightarrow{1} q_1 \xrightarrow{0} q_2$$

accepted by M

www.utm.my

Construct a state transition diagram of a DFA that accepts on {a,b} that contain an even number of a's and an odd number of b's.

Example of accepted strings:

aab, baa, baaabba

யயய.utm.my

4 states,

	q_0	even num.	of a'	s & (even	num.	of k	o's.
--	-------	-----------	-------	-------	------	------	------	------

$$S = \{q_0, q_1, q_2, q_3\}$$

யயய.utm.my

set of states, $S = \{q_0, q_1, q_2, q_3\}$

set of input symbols, $l = \{a, b\}$

initial state, q_0

final state, q_1

www.utm.my

State transition function

f _s	а	b	
q_0	q_3	q ₁	
q_1	q_2	q_0	
q_2	q_1	q_3	
q_3	q_0	q_2	

www.utm.my

State transition diagram

exercise

www.utm.my

Let M=(S, I, q_0 , f_s , F) be the DFA such that S={ q_0 , q_1 , q_2 }, I={a,b}, F={ q_2 }, q_0 =initial state, and f_s is given by,

f_s	а	b
q_0	q_0	q_1
q_1	q_2	q_1
q_2	q_2	q_0

Draw the state diagram of M.

Which of the strings abaa, bbbabb, bbbaa dan bababa are accepted by M?

exercise

யயய.utm.my

The transition diagram of M is,

Construct the transition table of M. Which of the strings baba, baab, abab dan abaab are accepted by M?

exercise

www.utm.my

Construct a state transition diagram of a DFA M with the input set {0,1} such that M accepts only the string 101.

Exercise

யயய.utm.my

Construct a deterministic finite automaton (DFA) that accepts the set of all bit strings that contain string '0101'.

Exercise

யயய.utm.my

Construct a deterministic finite automaton (DFA) that accepts all string over {a,b} that contain ab and end in bbb

Finite State Machines (FSM)

யயய.utm.my

- Automata with input as well as output.
- Every state has an input and corresponding to the input the state also has an output.
- These types of automata are commonly called finite state machines.

Finite State Machines (FSM)

www.utm.my

A finite state machine is a sextuple,

M= { S, I, O,
$$q_0$$
, f_s , f_o } where,

S is a finite nonempty set of states

I is the input alphabet

O is the output alphabet

q₀ is the initial state

f_s is the state transition function

 f_0 is the output function.

www.utm.my

- Let $M = \{ S, I, O, q_0, f_s, f_o \}$ be the FSM
- where,

$$S = \{q_0, q_1, q_2\},\$$

 $I = \{a,b\},\$
 $O=\{0,1\},\$
 $q_0=$ initial state,

www.utm.my

f_s and f₀

	f_s		f_{o}	
	а	b	а	b
q_0	q_1	q_0	0	1
q_1	q_2	q_2	1	0
q_2	q_0	q_1	0	1

www.utm.my

www.utm.my

Input string: bbab

$$q_0 \xrightarrow{b} q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2$$
1 1 0 0

Output string: 1100

Output: 0

www.utm.my

Input string: bababaa

$$q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_2$$
1 0 0 1 0 1

Output string: 1000101

Output: 1

www.utm.my

- Let $M = \{ S, I, O, q_0, f_s, f_o \}$ be the FSM
- where,

$$S = \{q_0, q_1, q_2, q_3\},\$$
 $I = \{a,b\},\$
 $O = \{0,1\},\$
 $q_0 = initial state,$

www.utm.my

 f_s and f_0

	f_s		f_{o}	
	a	b	a	b
q_0	q_0	q_2	0	1
q_1	q_1	q_2	1	0
q_2	q_3	q_1	1	1
q_3	q_3	q_3	1	1

www.utm.my

Draw the transition diagram of M.

www.utm.my

What is the output string if the input string is abbabab?

abbabab

யயய.utm.my

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_2 \xrightarrow{b} q_1 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \xrightarrow{b} q_3$$

$$0 \qquad 1 \qquad 1 \qquad 0 \qquad 1 \qquad 1$$

www.utm.my

What is the output of abbabab?

Output: 1

Finite State Machines (FSM)

யயய.utm.my

- Let M be a FSM.
- Let x be a nonempty string in M.
- We say that x is accepted by M if and only if the output of x is 1.

www.utm.my

யயய.utm.my

- Write the transition table of M.
- What is the output string if the input string is aaabbbb?
- What is the output if the input string is *bbbaaaa*?

யயய.utm.my

- Is the string aaa accepted by M?
- Which of the strings ba, aabbba, bbbb, aaabbbb are accepted by M?

www.utm.my

The transition table of M.

	f _s a	b	f _o a	b
q_0	q_1	q_3	0	0
q_1	q_3	q_2	0	1
q_2	q_2	q_2	1	1
q_3	q_4	q_3	1	0
q_4	q_4	q_4	1	1

www.utm.my

What is the output string if the input string is aaabbbb?

aaabbbb

யயய.utm.my

$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_3 \xrightarrow{a} q_4 \xrightarrow{b} q_4 \xrightarrow{b} q_4 \xrightarrow{b} q_4 \xrightarrow{b} q_4$$

$$0 \qquad 0 \qquad 1 \qquad 1 \qquad 1 \qquad 1 \qquad 1$$

Output string: 0011111

a/1,b/1

www.utm.my

What is the output if the input string is *bbbaaaa*?

bbbaaaa

www.utm.my

$$q_0 \xrightarrow{b} q_3 \xrightarrow{b} q_3 \xrightarrow{b} q_3 \xrightarrow{a} q_4 \xrightarrow{a} q_4 \xrightarrow{a} q_4 \xrightarrow{a} q_4 \xrightarrow{a} q_4$$

$$0 \qquad 0 \qquad 1 \qquad 1 \qquad 1$$

$$a/1,b/1$$

Output: 1

யயய.utm.my

Is the string aaa accepted by M?

aaa

www.utm.my

$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_3 \xrightarrow{a} q_4$$

$$0 \qquad 0 \qquad 1$$

Output: 1, accepted

a/1,b/1

யயய.utm.my

Which of the strings
ba, aabbba, bbbb, aaabbbb
are accepted by M?

ba

www.utm.my

$$q_0 \xrightarrow{b} q_3 \xrightarrow{a} q_4$$
0 1

Output: 1, accepted

a/1,b/1

aabbba

www.utm.my

$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_3 \xrightarrow{b} q_3 \xrightarrow{b} q_3 \xrightarrow{b} q_3 \xrightarrow{a} q_4$$

$$0 \qquad 0 \qquad 0 \qquad 0 \qquad 1$$

Output: 1, accepted

a/1,b/1

bbbb

www.utm.my

$$q_0 \xrightarrow{b} q_3 \xrightarrow{b} q_3 \xrightarrow{b} q_3 \xrightarrow{b} q_3$$

$$0 \qquad 0 \qquad 0$$

a/1,b/1

Output: 0, not accepted

aaabbbb

யயய.utm.my

$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_3 \xrightarrow{a} q_4 \xrightarrow{b} q_4 \xrightarrow{b} q_4 \xrightarrow{b} q_4 \xrightarrow{b} q_4$$

$$0 \qquad 0 \qquad 1 \qquad 1 \qquad 1 \qquad 1 \qquad 1$$

Output: 1, accepted

a/1,b/1

www.utm.my

- Consider a vending machine that sells candy and the cost of a candy is 50 cents.
- The machine accepts any sequence of 10-, 20-, or 50 cent coins.
- After inserting at least 50 cents, the customer can press the button to release the candy.

www.utm.my

- If the customer inputs more than 50 cents, the machine does not return the change.
- After selling the candy, the machine returns to initial state.
- Construct a finite state machine that models this vending machine.

யயய.utm.my

States,

 q_0 , initial state (0)

 q_1 , 10 cents

 q_2 , 20 cents

 q_3 , 30 cents

q₄, 40 cents

 q_5 , ≥ 50 cents

www.utm.my

$$S = \{q_0, q_1, q_2, q_3, q_4, q_5\},\$$

$$I = \{10,20,50,B\},\$$

$$O = \{0,1\},\$$

$$q_0$$
 = initial state,

www.utm.my

	10	f _s 20	50	В	10	20	f _o 50	В
q_0	q_1	q_2	q_5	q_0	0	0	0	0
q_1	q_2	q_3	q_5	q_1	0	0	0	0
q_2	q_3	q_4	q_5	q_2	0	0	0	0
q_3	q_4	q_5	q_5	q_3	0	0	0	0
q_4	q_5	q_5	q_5	q_4	0	0	0	0
q ₅	q_5	q_5	q_5	q_0	0	0	0	1

www.utm.my

www.utm.my

Design a FSM, with input alphabet I={a, b}, that outputs a 1 if the number of input symbols read so far is divisible by 3.

www.utm.my

யயய.utm.my

Let M= { S, I, O,
$$q_0$$
, f_s , f_o } be a FSM where,
 S ={ q_0 , q_1 , q_2 },
 I ={a,b},
 O ={0,1},
 q_0 = initial state,

www.utm.my

f_s and f₀

	f _s a	b	f _o a	b
q_0	q_2	q_1	1	1
q_1	q_2	q_2	0	0
q_2	q_1	q_2	1	1

www.utm.my

- Draw the transition diagram of M.
- What is the output string if the input string is aabbb?
- What is the output string if the input string is ababab?
- What is the output if the input string is abbbaba?
- What is the output if the input string is bbbababa?

யயய.utm.my

- Design a FSM that accepts all string over {a,b} that begin with aa.
- For example: aaab, aabba, aababab

Exercise

யயய.utm.my

- Design a FSM that accepts all string over {a,b} that end with aba.
- For example: aaba, aababa, bbbaba

Exercise

யயய.utm.my

Design a FSM that accepts all string over {a,b} that contain bbb and end in ab