

Revision

- 2 main branches of statistics?
- Descriptive statistics?
- Inferential statistics?
- ■Population vs Sample?
- Data analysis process?
- Levels of measurement?

PAST YEAR

www.utm.my

Determine which of the four levels of measurement (nominal, ordinal, interval and ratio) is most appropriate. [5 marks]

- Heights of women basketball players in a tournament.
- Ratings of superior, above average, average, below average or poor for blind dates.
- Noon temperatures (in degrees Celsius) in a Johor Bahru this week.
- A movie critic's classification of "drama, comedy, adventure".
- e. Consumer Reports magazine ratings of "best buy, recommended, not recommended".
- Distances travelled by students who commute to faculty.
- g. The actual contents (in ml) of cola in Pepsi cans.
- h. IQ scores, where the score is considered to be a measure of intelligence.
- i. IQ scores, where the score is considered to be the number of points scored on the IQ test.
- j. The number of bugs made when a programmer develop a coding for a project.

INNOVATIVE • ENTREPRENEURIAL • GLOBAL

Types of Data Set

யயய.utm.my

- Univariate
- Multivariate
 - o Bivariate

Univariate Data Set

- Univariate data set consists of observations on a single variable made on individuals in a sample or population.
- Variable is any characteristic whose value may change from one individual or object to another.
- A univariate data set is categorical (or qualitative) if the individual observations are categorical response.
 - Example: recorded calculator brand.
- A univariate data set is **numerical** (or quantitative) if each observation is a number.
 - Example: recorded number of calculator purchased.

Multivariate Data Set

- Multivariate data set consists of observations on two or more variables made on individuals in a sample or population.
 - Example: recorded height, weight, pulse rate and systolic blood pressure for each individual in a group.
- A bivariate data are special case of multivariate data set because it consists only two variables or two different characteristics of observations.
 - Example: recorded both height and weight for each individual in a group.

Displaying Categorical Data

- An appropriate graphical or tabular of data can be an effective way to summarize and communicate information.
 - Frequency distribution
 - Bar chart
 - Pie chart

Frequency Distribution

- When data is collected from a survey or designed experiment, they must be organized into a manageable form.
- Data that is not organized is referred to as raw data.
- We can construct a frequency table to organize data.

Frequency Distribution

- A frequency distribution for categorical data is a table that displays the possible categories along with the associated frequencies and/or relative frequencies
- The frequency for a particular category is the number of times the category appears in the data set.
- The relative frequency for a particular category is the fraction or proportion of the observations resulting in the category.

```
relative = frequency
frequency number of observations in the data set
```


www.utm.my

Data

Staff	Position	Blood Type	Weight	Height	Qualification
1	Senior Lecturer	А	60	165	PhD
2	Lecturer	В	55	150	Master
3	Professor	0	65	170	PhD
4	Associate Professor	AB	70	175	PhD
5	Associate Professor	0	61	160	PhD
6	Senior Lecturer	0	58	155	PhD
7	Senior Lecturer	В	48	167	PhD
8	Lecturer	Α	68	174	Master
9	Lecturer	Α	55	150	Master
10	Associate Professor	AB	62	163	PhD
11	Professor	0	58	165	PhD
•••				•••	
140	Tutor	0	45	150	Master

www.utm.my

Staff distribution in Faculty of Computing

Frequency Table

Position	Number of Staff
	(frequency)
Professor	12
Associate Professor	20
Senior Lecturer	59
Lecturer	40
Tutor	9
Total	140

Position	frequency	Relative frequency
Professor	12	12 ÷ 140 = 0.09
Associate Professor	20	0.14
Senior Lecturer	59	0.42
Lecturer	40	0.29
Tutor	9	0.06
Total	140	1.00

www.utm.my

Data

Age	NetUse	Age	NetUse	Age	NetUse
26.0	Yes	45.0	No	55.0	No
48.0	Yes	19.0	No	37.0	No
67.0	Yes	82.0	No	43.0	Yes
44.0	No	83.0	No	29.0	Yes
52.0	No	20.0	Yes	57.0	Yes
52.0	No	89.0	No	36.0	No
51.0	Yes	88.0	Yes	52.0	No
52.0	No	72.0	Yes	56.0	Yes
77.0	No	82.0	Yes	66.0	Yes
40.0	No	34.0	No	46.0	No

www.utm.my

List the variables involved and calculate the frequency

Response	Frequency
No	17
Yes	13

- Other types of response with missing value:
 - DK (Don't know)
 - NAP (Not applicable)
 - NA (No answer/response)

www.utm.my

Calculate the percent, valid percent and cumulative percent

Response	Frequency	Percent	Valid Percent	Cumulative Percent
No	17	56.7	56.7	56.7
Yes	13	43.3	43.3	100.0
Total	30	100.0	100.0	

Valid percent: excludes data with missing value (ie. DK, NAP, and NA)

Bar Charts

- A bar chart is a graph of the frequency distribution of categorical data.
- Each category in the frequency distribution is represented by a bar or rectangle.

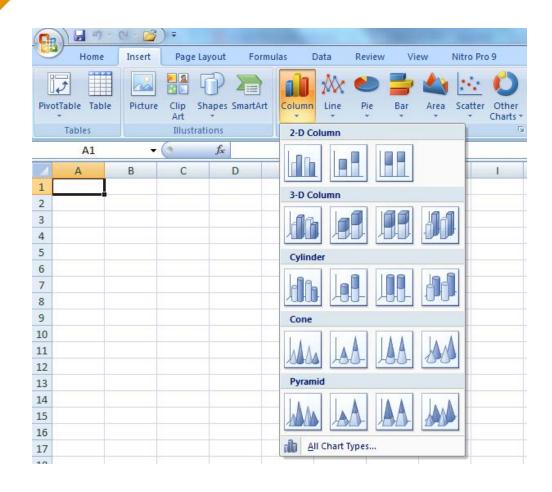
Bar Charts

www.utm.my

How to construct

- Draw a horizontal line, and write the category names or labels below the line at regularly spaced intervals.
- Draw a vertical line, and label the scale using either frequency or relative frequency.
- Place a rectangular bar above each category label. The height is determined by the category's frequency or relative frequency, and all bars should have the same width.

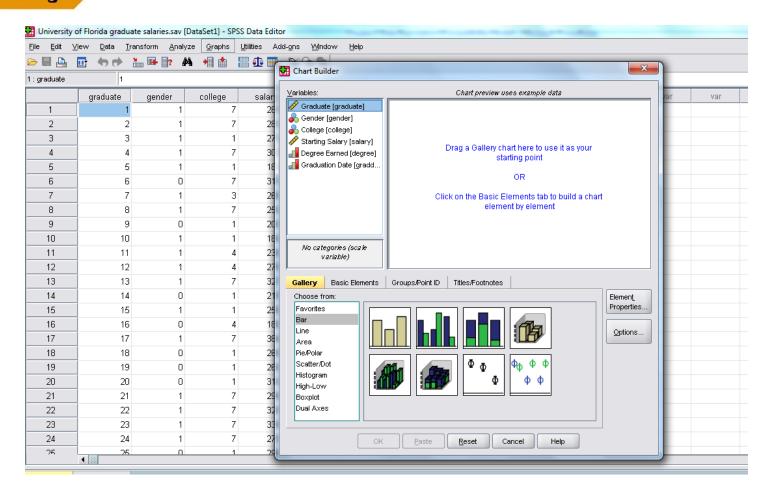
What to look for


Frequently and infrequently categories.

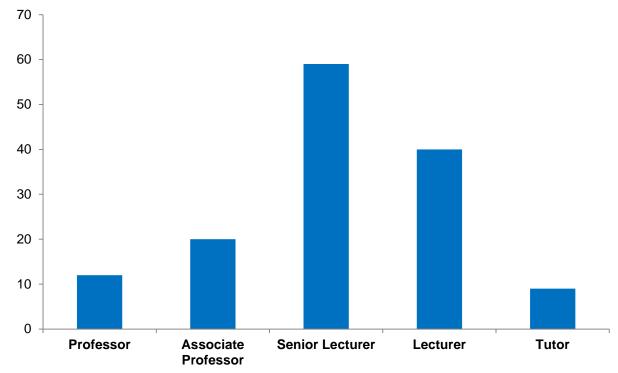
Statistical Tools

www.utm.my

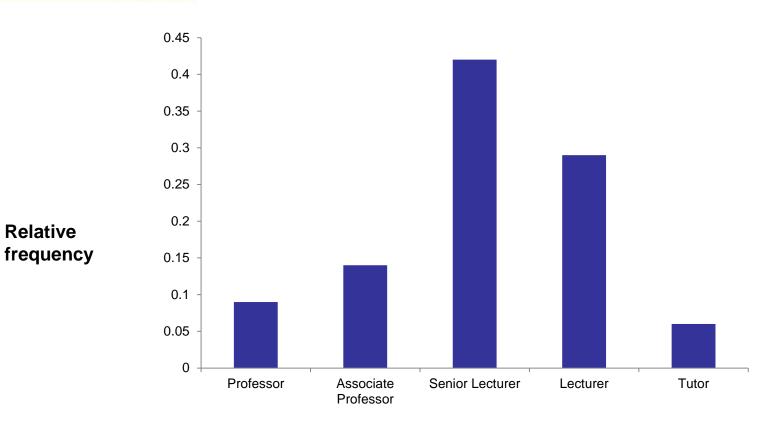
Excel



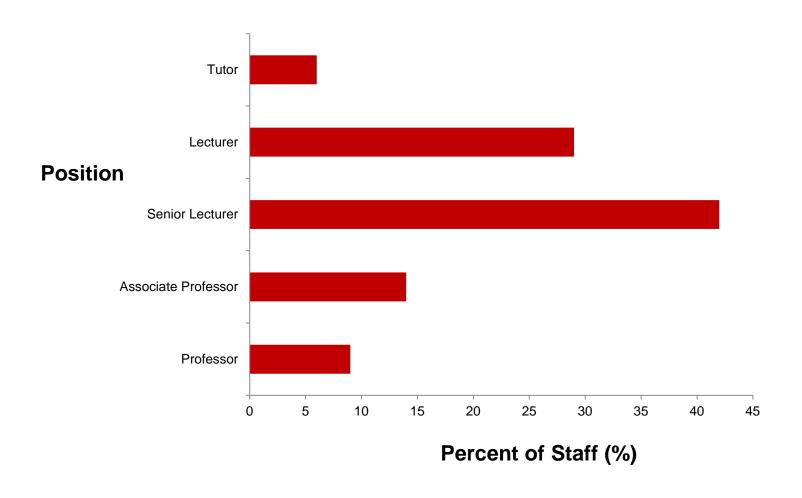
Statistical Tools


www.utm.my

SPSS



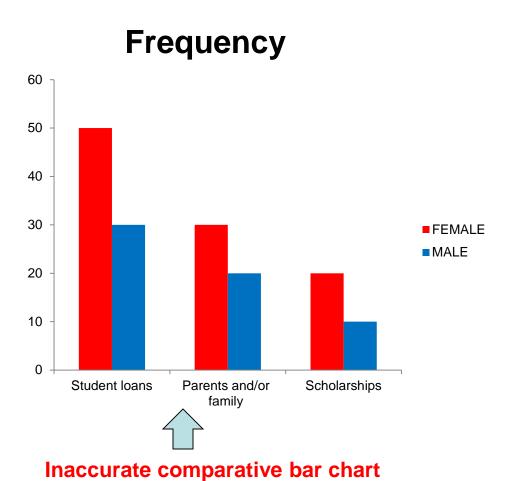
Position

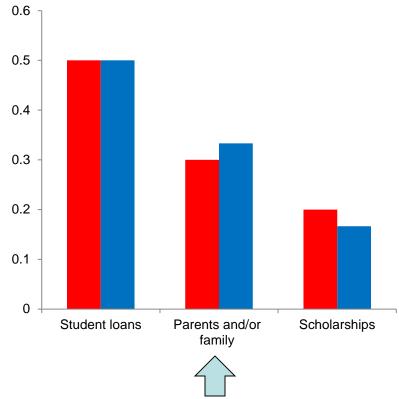


www.utm.my

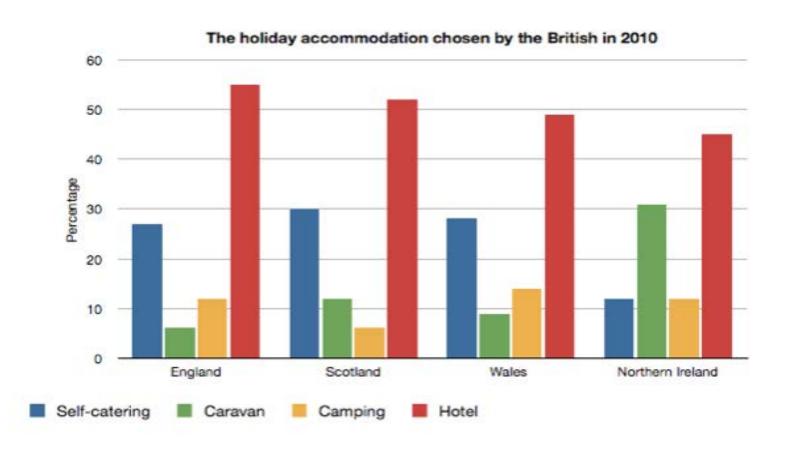
Position

Comparative Bar Charts


- Bar chart can also be used to give a visual comparison of two or more groups.
- When constructing a comparative bar graph we use the relative frequency rather than the frequency to construct the scale on the vertical axis so that we can make meaningful comparisons even if the sample sizes are not the same.


	Freq	uency	Relative Frequency	
Source of funding	Female	Male	Female	Male
Student loans	50	30	0.5	0.50
Parents and/or family	30	20	0.3	0.33
Scholarships	20	10	0.2	0.17
Total	100	60	1.00	1.00

www.utm.my



Relative frequency

Accurate comparative bar chart

Pie Charts

- In a pie chart, a circle is used to represent the whole data set, with "slices" of the pie representing the possible categories.
- The size of the slice for a particular category is proportional to the corresponding frequency or relative frequency.
- Pie charts are most effective for summarizing data sets when there are not too many different categories.

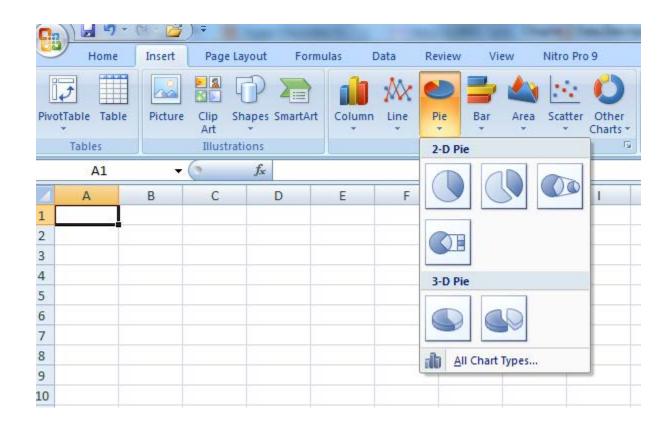
Pie Charts

www.utm.my

How to construct

- Draw a circle to represent the entire data set
- For each category, calculate the "slice" size.
 slice size = 360 (category relative frequency)
- Draw a slice of appropriate size for each category.

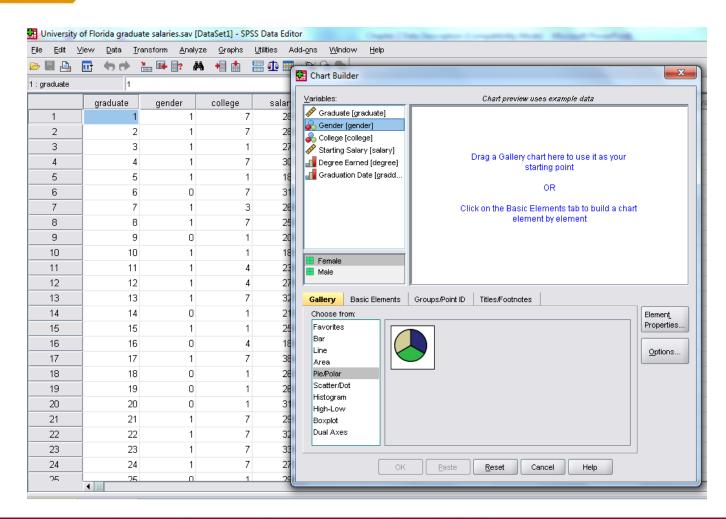
What to look for


Categories that form large and small proportions of the data set.

Statistical Tools

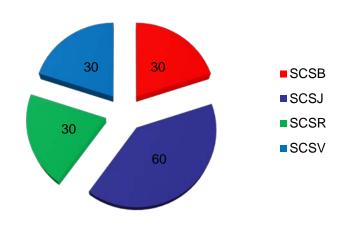
www.utm.my

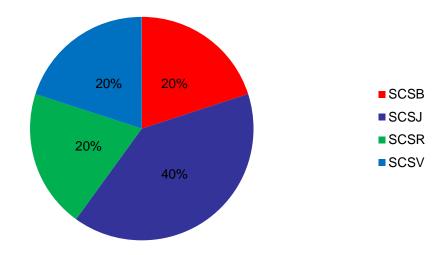
Excell



Statistical Tools

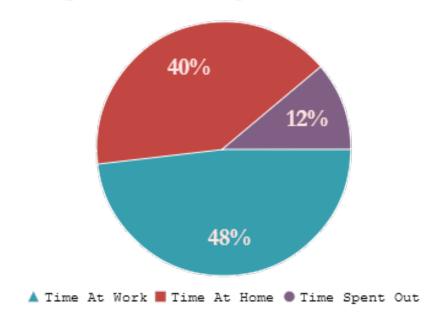
www.utm.my


SPSS

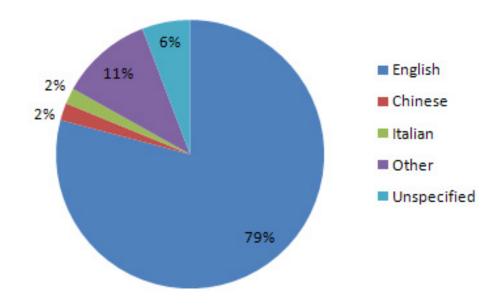


www.utm.my

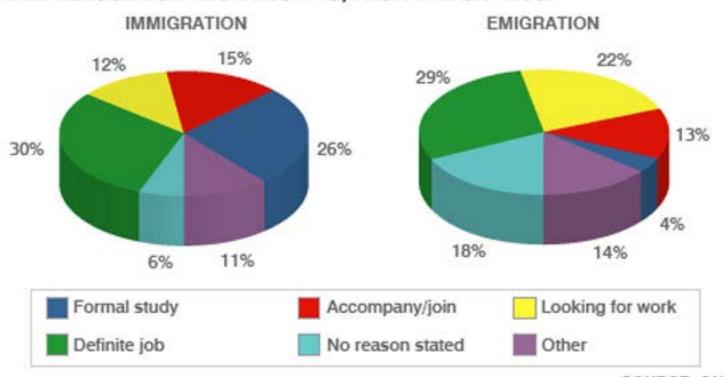
Number of Students for Year 2013/2014 Intake


Percentage of Number of Students for Year 2013/2014 Intake

யயய.utm.my


How my time is spent in a week?

யயய.utm.my


Language Compositon of Australia

www.utm.my

MAIN REASON FOR MIGRATION TO/FROM THE UK - 2007

SOURCE: ONS

Displaying Numerical Data

www.utm.my

Numerical Data

- Ungrouped data comprise a listing of the observed values.
- Grouped data represent a lumping together of the observed values.
- The data can be discrete or continuous.

www.utm.my

Ungrouped data

```
      0
      1
      3
      0
      1
      0
      1
      0

      1
      5
      4
      1
      2
      1
      2
      0

      1
      0
      2
      0
      0
      2
      0

      2
      1
      1
      .....
```


www.utm.my

Ungrouped data

2.559	2.556	2.566	2.546	2.561	2.570	2.546
2.565	2.543	2.538	2.560	2.560	2.545	2.551
2.568	2.546	2.555	2.551	2.554	2.574	2.568
2.572	2.550	2.556	2.551	2.561	2.560	2.564
2.567	2.560	2.551	2.562	2.542	2.549	2.561

www.utm.my

Grouped data

Frequency distribution

Data	Frequency
0	15
1	20
2	8
3	5
:	:
:	:

www.utm.my

Grouped data

Frequency distribution

Data	Frequency
2.531 - 2.535	6
2.536 - 2.540	8
2.541 – 2.545	12
2.546 - 2.550	13
:	:
:	:

Frequency Distributions

- A frequency distribution shows the number of observations falling into each of several ranges of values.
- Frequency distributions are portrayed as frequency tables, histograms, or polygons.
- Frequency distributions can show either the actual number of observations falling in each range or the percentage of observations. In the latter instance, the distribution is called a **relative frequency distribution**.

www.utm.my

Discrete Data

5	7	7	1
3	2	8	6
8	2	4	4
9	10	2	6
3	1	6	6
9	9	7	5
7	10	8	1
5	8		

Marks	Tally	Frequency
1	///	3
2	///	3
3	//	2
4	//	2
5	//	2
6	HHT .	5
7	////	4
8	HH .	5
9	//	2
10	//	2
Total		30

Marks	Frequency	Relative Frequency	Percent	Cumulative percent
				•
1	3	0.100	10.0	10.0
2	3	0.100	10.0	20.0
3	2	0.067	6.7	26.7
4	2	0.067	6.7	33.4
5	3	0.100	10.0	43.4
6	4	0.133	13.3	56.7
7	4	0.133	13.3	70.0
8	4	0.133	13.3	83.3
9	3	0.100	10.0	93.3
10	2	0.067	6.7	100.00
Total	30	1.000	100.00	

www.utm.my

Continuous data

Class Interval	Frequency
5 to <10	1
10 to <15	3
15 to <20	6
20 to <25	4
25 to <30	2

Dotplots

யயய.utm.my

When to use: Small numerical data sets.

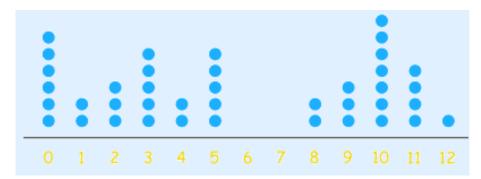
How to construct:

- 1. Draw a horizontal line and mark it with an appropriate measurement scale.
- Locate each value in the data set along the measurement scale, and represent it by a dot. If there are two or more observations with the same value, stack the dots vertically.

What to look for:

- ✓ A representative or typical value in the data set.
- ✓ The extent to which the data values spread out.
- ✓ The nature of the distribution of values along the number line.
- ✓ The presence of unusual values in the data set.

www.utm.my


Minutes To Eat Breakfast

A survey of "How long does it take you to eat breakfast?" has these results:

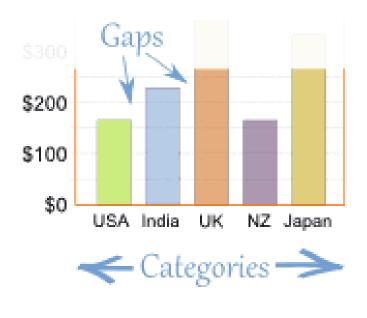
Minutes: 0 1 2 3 4 5 6 7 8 9 10 11 12

People: 6 2 3 5 2 5 0 0 2 3 7 4 1

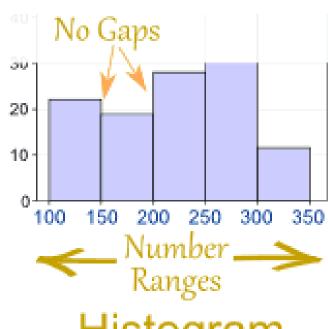
Which means that 6 people take 0 minutes to eat breakfast (they probably had no breakfast!), 2 people say they only spend 1 minute having breakfast, etc. The dot plot shown below,

Histograms

- A histogram is the most commonly used graph to show frequency distributions.
- A histogram consists of a set of rectangles that represent the frequency in each categories.
- It represents graphically the frequencies of the observed values


Histograms

- What to look for
 - Central or typical value
 - Extent of spread or variation
 - General shape
 - Location and number of peaks
 - Presents of gap and outliers



Difference between Histograms and Bar Chart

www.utm.my

Bar Graph

Histogram

Difference between Histograms and Bar Chart

www.utm.my

Histogram or Bar Graph

Situation	Bar Graph or Histogram?
We want to compare total income of five different people.	Bar graph. Key question: What is the revenue for each person?
We have measured revenues of several people. We want to compare numbers of people that make from 0 to 10,000; from 10,000 to 20,000; from 20,000 to 30,000 and so on.	Histogram. Key question: How many people are in each class of revenues?
We want to compare heights of ten basketball players on a team.	Bar graph. Key question: What is the height of each player?
We have measured several players. We want to compare numbers of players that are from 5-5.5 feet high; from 5.5-6; from 6-6.5 and so on.	Histogram. Key question: How many players are there in each class of heights?

- Collect data and construct a tally sheet
 - The number of cells should be between 5 and 20
 - Use 5 to 9 cells when the number of observation <100
 - Use 8 to 17 (between 100 and 500)
 - Use 15 to 20 (>500)
- Determine the range
 - $R = X_h X_l$
 - Where R = range, X_h = highest number, X_l = lowest number

www.utm.my

- Determine the cell interval
 - The distance between adjacent cell midpoints
 - An odd interval is recommended, so that the midpoint values will be the same number of decimal places as the data values
 - Sturgis' rule $i = \frac{R}{1 + 3.322 \log n}$

(n = number of observations)

• Trial and error, h = R/i(h = number of cells, R = range)

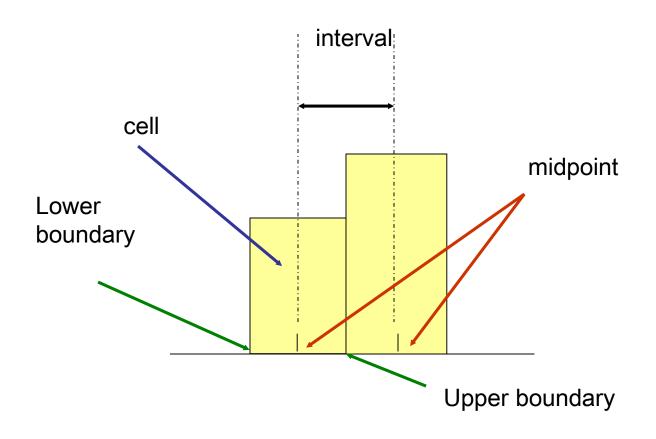
www.utm.my

Determine the cell midpoint

- The lowest cell midpoint must be located to include the lowest data value in its cell.
- The simplest technique is to select the lowest data point as the midpoint value for the first cell
- Use formula

$$MP_l = X_l + \frac{i}{2}$$

(do not round answer)


 MP_I = midpoint for lowest cell

- Determine the cell boundaries
 - Cell boundaries are the extreme or limit values of a cell (upper boundary and lower boundary)
 - All the observations that fall between the upper and lower boundaries are classified into that particular cell.
 - The boundary values are an extra decimal place or significant figure in accuracy than the observed values
- Post the cell frequency
- Construct the histogram

யயய.utm.my

Example – Steel Shaft Weight (kg)

www.utm.mu

2.559	2.556	2.566	2.546	2.561	2.570	2.546
2.565	2.543	2.538	2.560	2.560	2.545	2.551
2.568	2.546	2.555	2.551	2.554	2.574	2.568
2.572	2.550	2.556	2.551	2.561	2.560	2.564
2.567	2.560	2.551	2.562	2.542	2.549	2.561
2.556	2.550	2.561	2.558	2.556	2.559	2.557
2.532	2.575	2.551	2.550	2.559	2.565	2.552
2.560	2.534	2.547	2.569	2.559	2.549	2.544
2.550	2.552	2.536	2.570	2.564	2.553	2.558
2.538	2.564	2.552	2.543	2.562	2.571	2.553
2.539	2.569	2.552	2.536	2.537	2.532	2.552
2.575 (h)	2.545	2.551	2.547	2.537	2.547	2.533
2.538	2.571	2.545	2.545	2.556	2.543	2.551
2.569	2.559	2.534	2.561	2.567	2.572	2.558
2.542	2.574	2.570	2.542	2.552	2.551	2.553
2.546	2.531 (1)	2.563	2.554	2.544		

Example – Tally Sheet

www.utm.mu

	DW.G(III.I							
weight	tabulation	frequency	weight	tabulation	frequency	weight	tabulation	frequency
2.531		1	2.546	IIII	4	2.561	-	5
2.532	II	2	2.547		3	2.562	ll l	2
2.533	l	1	2.548		0	2.563		1
2.534	ll l	2	2.549	ll l	2	2.564	III	3
2.535		0	2.550	IIII	4	2.565	ll l	2
2.536	ll l	2	2.551	 	8	2.566	l	1
2.537	II	2	2.552	 	6	2.567	II	2
2.538	III	3	2.553	III	3	2.568		2
2.539	l	1	2.554	ll l	2	2.569	III	3
2.540		0	2.555		1	2.570	III	3
2.541		0	2.556	##	5	2.571	II	2
2.542	III	3	2.557		1	2.572	II	2
2.543	III	3	2.558		3	2.573		0
2.544	ll l	2	2.559	###	5	2.574	ll l	2
2.545	IIII	4	2.560	###	5	2.575	ll l	2

Example – range

www.utm.my

Determine the range

$$R = X_h - X_l$$
= 2.575 - 2.531
= 0.044

Example - cell interval

www.utm.my

- Determine the cell interval
 - Sturgis' rule

$$i = \frac{R}{1 + 3.322 \log n}$$

$$= \frac{0.044}{1 + 3.322 \log 110} = \frac{0.044}{1 + 3.322(2.041)} = 0.0057$$

• The closest odd interval for the data is 0.005

Example - cell interval

- Determine the cell interval
 - Trial and error
 - Based on the guidelines, 0.005 will give the best presentation of the data.

$$i = 0.003;$$
 $h = \frac{R}{i} = \frac{0.044}{0.003} = 15$

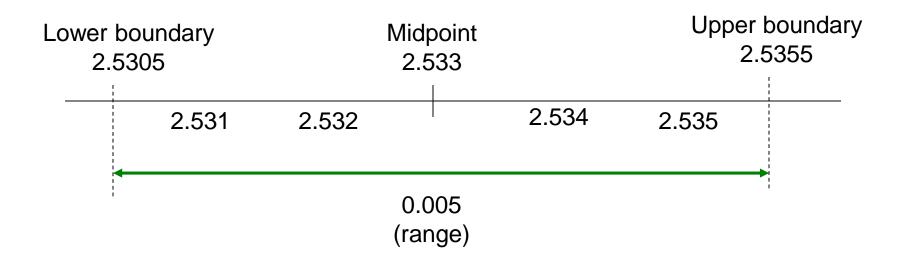
$$i = 0.005;$$
 $h = \frac{R}{i} = \frac{0.044}{0.005} = 9$

$$i = 0.007;$$
 $h = \frac{R}{i} = \frac{0.044}{0.007} = 6$

Example - cell midpoints

- Determine the cell midpoints
- The simplest technique is to select the lowest data point (2.531) as the midpoint value for the first cell.
- A better technique is to use the formula

$$MP_l = X_l + \frac{i}{2} = 2.531 + \frac{0.005}{2} = 2.533$$


Cell midpoint
2.533
2.538
2.543
2.548
2.553
2.558
2.563
2.568
2.573

Example – cell boundaries

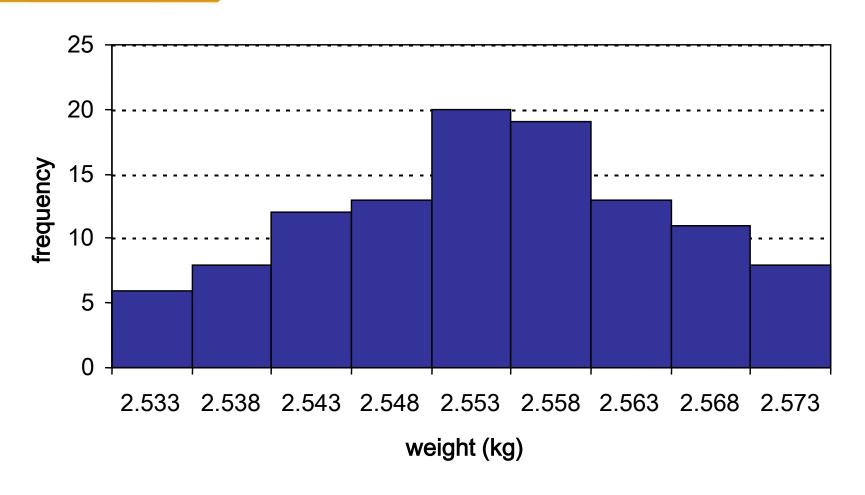
www.utm.my

The boundary values are an extra decimal place or significant figure in accuracy than the observed values.

Example – cell boundaries

Cell boundaries	Cell midpoint
2.5305 – 2.5355	2.533
2.5355 – 2.5405	2.538
2.5405 – 2.5455	2.543
2.5455 – 2.5505	2.548
2.5505 – 2.5555	2.553
2.5555 – 2.5605	2.558
2.5605 – 2.5655	2.563
2.5655 – 2.5705	2.568
2.5705 – 2.5755	2.573

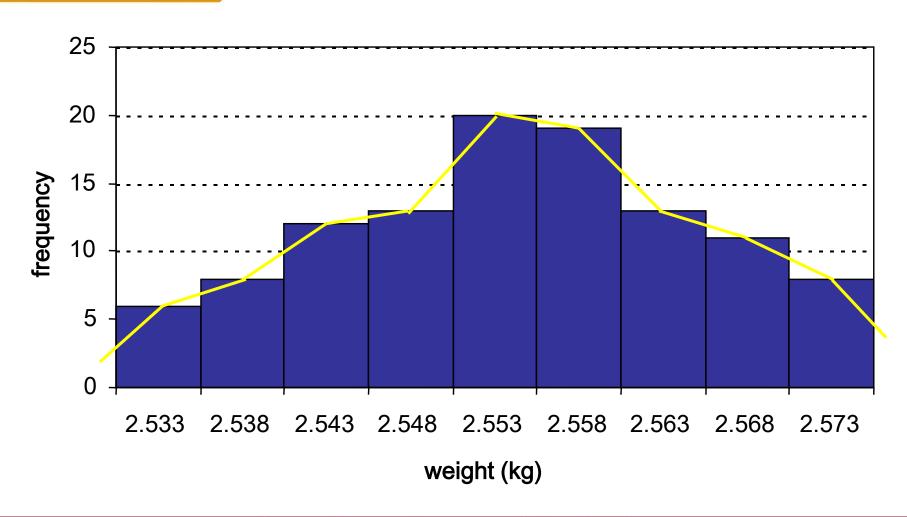
Example – cell frequency


யயய.utm.my

Cell boundaries	Cell midpoint	frequency
2.5305 – 2.5355	2.533	6
2.5355 – 2.5405	2.538	8
2.5405 – 2.5455	2.543	12
2.5455 – 2.5505	2.548	13
2.5505 – 2.5555	2.553	20
2.5555 – 2.5605	2.558	19
2.5605 – 2.5655	2.563	13
2.5655 – 2.5705	2.568	11
2.5705 – 2.5755	2.573	8

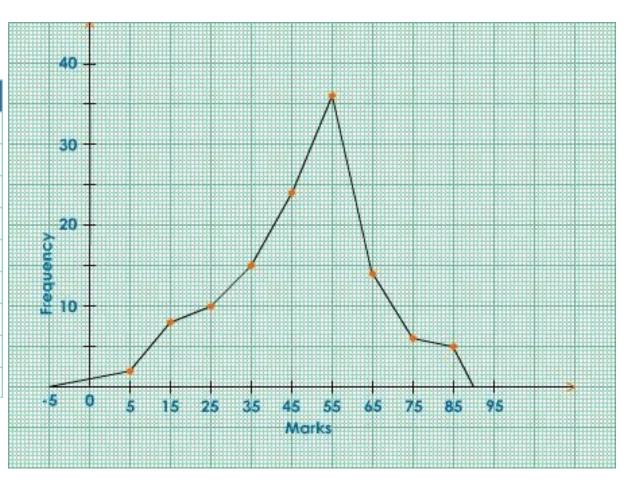
Example - Histogram

யயய்.utm.my



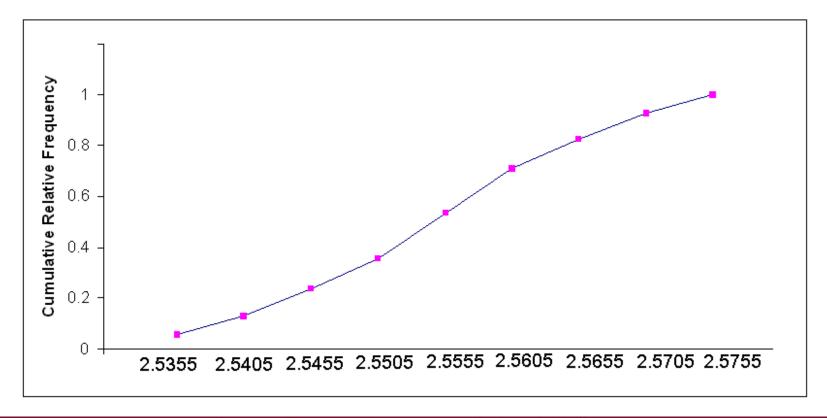
Frequency Polygon

- Relative frequencies of class intervals can also be shown in a frequency polygon.
- In a frequency distribution, the mid-value of each class is obtained.
- The frequency is plotted against the corresponding midvalue.
- These points are joined by straight lines.
- These straight lines may be extended in both directions to meet the X-axis to form a polygon.

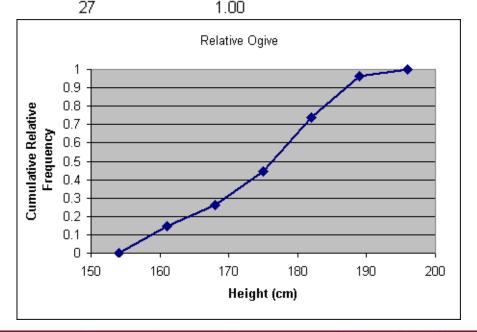


யயய்.utm.my

Marks	Frequency
0 - 10	2
10 - 20	8
20 - 30	10
30 - 40	15
40 - 50	24
50 - 60	36
60 - 70	14
70 - 80	6
80 - 90	5



Ogive


www.utm.my

A plot of the cumulative frequency against the upper class boundary with the points joined by line segments.

				(Ogive)	(Relative Ogive)
Class num	Class	Frequency	Relative Frequency	Cumulative Freq.	Cumulative Relative Freq.
1	154 and under 161	4	0.15	4	0.15
2	161 and under 168	3	0.11	7	0.26
3	168 and under 175	5	0.19	12	0.44
4	175 and under 182	8	0.30	20	0.74
5	182 and under 189	6	0.22	26	0.96
6	189 and under 196	1	0.04	27	1.00
			1.00		

Stem-and-Leaf

- A stem-and-leaf display is an effective and compact way to summarize univariate numerical data.
- Each number in the data set is broken into two pieces, a stem and a leaf.
- The stem is the first part of the number and consists of the beginning digit(s).
- The leaf is the last part of the number and consists of the final digit(s)

Stem-and-Leaf

www.utm.my

When to use

 Numerical data sets with a small to moderate number of observations (does not work well for very large data sets)

How to Construct

- Select one or more leading digits for the stem values. The trailing digits (or sometimes just the first one of the trailing digits) become the leaves.
- List possible stem values in a vertical column.
- Record the leaf for every observation beside the corresponding stem value.
- Indicate the units for stems and leaves someplace in the display.

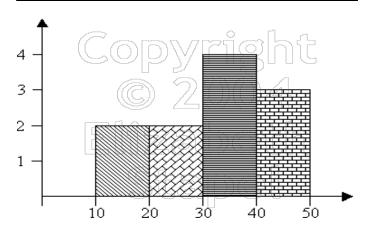
Stem-and-Leaf

www.utm.my

What to look for

The display conveys information about

- a representative or typical value in the data set
- the extent of spread about a typical value
- the presence of any gaps in the data
- the extent of symmetry in the distribution of values
- the number and location of peaks



Histogram vs Stem-and-leaf

www.utm.my

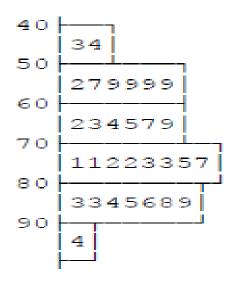
Given the following data: 12, 13, 21, 27, 33, 34, 35, 37, 40, 40, 41

Frequency class	Frequency
10 - 19	2
20 - 29	2
30 - 39	4
40 - 49	3

stem	leaf				
1	2	3			
2	1	7			
3	3	4	5	7	
4	0	0	1		

Stem – left-hand column that contains the tens digit

Leaves – right hand column listing the one's digit for each of the tens digit (stem values)


Histogram vs Stem-and-leaf

- In stem-and-leaf:
 - Original values can still be determined
 - Horizontal leaves in the stem-and-leaf plot correspond to the vertical bars in the histogram
 - The leaves have lengths equal to the numbers in the frequency table.

Stem-and-leaf

- Stem-and-leaf can be converted to histogram:
 - Just place bars over each list in the leaves. Example (with different data set):

Stem-and-leaf

www.utm.my

Some issues:

- What about when smallest and largest values in data set is big (e.g. 418 to 1272)? What should be the suitable values for stem?
 - Choise for stem values could be 100s, so that the stem values would be:

It is nice to add legend to indicate stem values are multiple of 10, 100, 0.01, etc. Example of legend stem-and-leaf with legend:

www.utm.my

Data set

109	96	94
95	93	93
89	84	80
78	73	70
55	41	40

10	9
9	33456
8	049
7	038
6	
5	5
4	01

Stem: Tens Leaf: Ones

www.utm.my

Data set

0.553 0.570

0.576 0.601

0.606 0.606

0.609 0.611

0.615 0.628

0.654 0.662

0.670 0.672

0.690 0.693

0.749 0.844

0.933

SPSS Output

Stem-and-Leaf Plot

Frequency Stem & Leaf

3.00 5.577

7.00 6.0000112

6.00 6 . 567799

1.00 7.4

2.00 Extremes (>=.84)

Stem width: .100

Each leaf: 1 case(s)

www.utm.my

Data set

```
3423
            3586
                  4010
                        3785
                                     5761
                                           6176
                               3447
3977
2773 3239
            3239
                  3323
                        5653
                               5384
                                     4991
                                           3686
3208
    5011
            6230
```

```
2 773

3 977,423,586,785,447,239,239,323,686,208

4 010,991

5 761,653,384,011

6 176,230 Stem: Thousands
```

Leaf: Ones

www.utm.my

Data set

3977 3423

3586 4010

3785 3447

5761 6176

2773 3239

3239 3323

5653 5384

4991 3686

3208 5011

6230

SPSS Output

Stem-and-Leaf Plot

Frequency Stem & Leaf

1.00 2.7

6.00 3 . 222344

4.00 3.5679

1.00 4.0

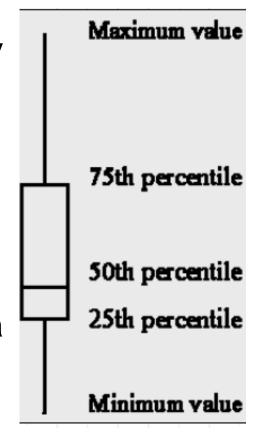
1.00 4.9

2.00 5.03

2.00 5.67

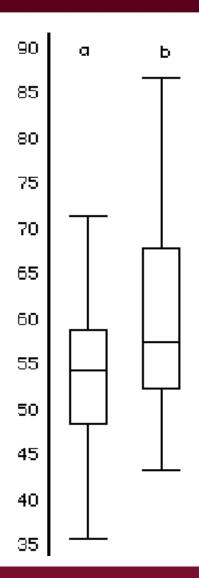
2.00 6.12

Stem width: 1000.00


Each leaf: 1 case(s)

- It would be nice to have a method of summarizing data that gives more detail than just a measure of center and spread and yet less detail than a stem-and-leaf display or histogram.
- A boxplot is one such technique.
- It is compact, yet it provides information about center, spread, and symmetry or skewness of the data.

- Box plots graphically display five key statistics of a data set
 - Minimum
 - First quartile
 - Median
 - Third quartile
 - Maximum
- Very useful in identifying the shape of a distribution and outliers in data set.



www.utm.my

It is often useful to compare data from two or more groups by viewing box plots from the groups side by side.

The data from *b* are higher, more spread out, and have a positive skew.

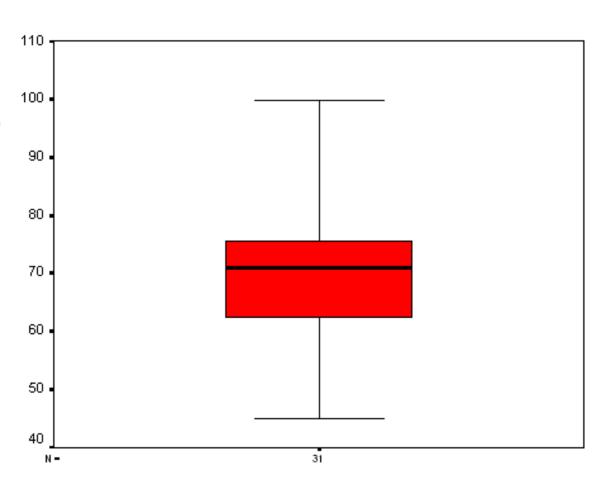
That the skew is positive can be determined by the fact that the upper whisker is longer than the lower whisker.

- 2 types of boxplots:
 - Skeletal boxplot
 - Modified boxplot

- Construction of a Skeletal Boxplot
 - Draw a vertical (or horizontal) measurement scale
 - Construct a rectangular box with a lower (or left) edge at the lower quartile and a upper (or right) edge at the upper quartile.
 The box width is then equal to the interquartile range (iqr) iqr = upper quartile lower quartile
 - Draw a horizontal (or vertical) line segment inside the box at the location of the median.
 - Extend vertical (or horizontal) line segments, call whiskers, from each of the box to the smallest and largest observations in the data set.

www.utm.my

Data set:


45 48 50 54 57 60 60 62 63 63 64 65 67 68 69 71 (median) 71 72 72 74 74 75 75 76 80 83 84 88 100 100 100

- Smallest observation = 45,
- Lower quartile = 62
- Median = 71
- Upper quartile = 76
- Largest observation = 100

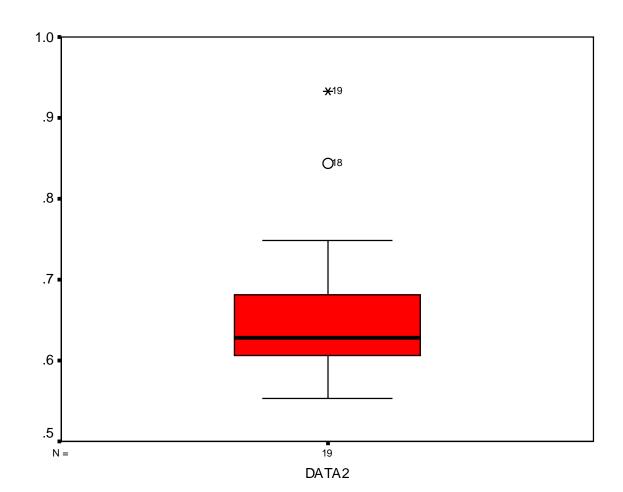
www.utm.my

Smallest observation = 45, Lower quartile = 62 Median = 71 Upper quartile = 76 Largest observation = 100

- An observation is an **outlier** if it is more than 1.5(*iqr*) away from the nearest quartile (the nearest end of the box)
- An outlier is **extreme** if it is more than 3(iqr) from the nearest end of the box, and it is **mild** otherwise.
- A modified boxplot represent mild outliers by solid circles "•" and extreme outliers by open circles "○" or sometimes asterisk "*", and the whiskers extend on each end to the most extreme observations that are not outliers.

- Construction of a Modified Boxplot
 - Draw a vertical (or horizontal) measurement scale
 - Construct a rectangular box with a lower (or left) edge at the lower quartile and a upper (or right) edge at the upper quartile.
 The box width is then equal to igr.
 - Draw a horizontal (or vertical) line segment inside the box at the location of the median.
 - Determine if there are any mild or extreme outliers in the data set
 - Draw whiskers that extend from each end of the box to the most extreme observation that is not an outlier.
 - Draw a o to mark the location if any mild outliers in the data set
 - Draw a * to mark the location if any extreme outliers in the data set

www.utm.my


Data Set

0.749

0.933

0.553 0.570 0.576 0.601 0.606 0.606 0.609 0.611 0.615 0.628 0.654 0.662 0.670 0.672 0.690 0.693

0.844

யயய.utm.my

■ The data below represent the color of M&Ms in a bag of plain M&Ms. Construct a frequency distribution of the color of plain M&Ms.

Yellow	Orange	Brown	Green	Green
Blue	Brown	Red	Brown	Brown
Orange	Brown	Red	Brown	Red
Green	Brown	Red	Green	Yellow
Yellow	Red	Red	Brown	Orange
Yellow	Orange	Red	Orange	Blue
Brown	Red	Yellow	Brown	Red
Brown	Yellow	Yellow	Blue	Yellow
Yellow	Brown	Yellow	Green	Orange

யயய.utm.my

Construct a histogram for the following data:

57	61	57	57	58	57	61	54
68	51	49	64	50	48	65	52
56	46	54	49	51	47	55	55
54	42	51	56	55	51	54	51
60	62	43	55	56	61	52	69
64	46						

www.utm.my

Construct two histograms corresponding to the frequency table of samples of students cars' age and faculty/staff cars' age obtained from a college. Compare both of them.

Age	Students	Faculty/Staff
0 to < 3	23	30
3 to < 6	33	47
6 to < 9	63	36
9 to < 12	68	30
12 to < 15	19	8
15 to < 18	10	0
18 to < 21	1	0
21 to < 24	0	1

www.utm.my

Construct a stem-and-leaf display for the following data set: (Hint: First round the data to the nearest whole number)

```
63.2
      67.7
           59.1
                  64.4
                        88.2
                              79.5
                                     81.4
                                           59.5
73.7
     92.0
            93.2
                  87.6
                        31.8
                              73.0
                                     67.4
                                           70.2
71.0
     85.9
            99.0
                  63.8
                        79.5
                              96.9
                                    71.9
                                           61.6
54.6 63.6
                              70.0
           85.6
                  67.3
                        83.8
                                    67.7
                                           73.1
75.6
     65.2
                        75.5
                               46.5
           71.7
                  83.8
                                     63.9
                                           80.0
```


www.utm.my

The following list shoes the ages of most of the employees at the Vita Needle Company. Construct a boxplot.

76	45	72	77	63
65	87	73	84	86
79	86	75	87	74
39	75	41	82	34
88	85	79	73	53

PAST YEAR

www.utm.my

Fifteen (15) people were asked to state the number of hours they exercise in a seven days period. The results of the survey are listed below.

i) Complete the frequency table below (Table 1).

(5 marks)

Table 1

Hours of Exercise	Tally	Frequency
0-2		
3 – 5		
6 – 8		
9 – 11		
12 – 14		

ii) Plot a histogram to display the data.

(3 marks)

iii) Make some conclusions based on the information displayed in the histogram.

(2 marks)

- Project 1 Briefing
- grouping
- **DATA**