

SCSI1013: Discrete Structure
[2019/2020 - Semester 1]
Due Date: 17th October 2019

TUTORIAL 1.2

1. Let $A = \mathbb{R}$ (real numbers). Give a description of the relation R on A specified by the shaded region in Figure 1.

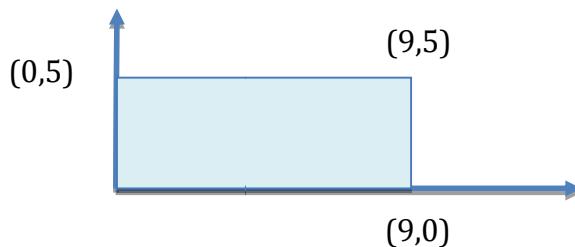


Figure 1

2. Let A = a set of people. Let $a R b$ if and only if a is the father of b ; let $a S b$ if and only if a is the mother of b . Describe $R \cup S$.
3. Let $D = \{1, 2, 3, 4, 5, 6\}$ and R be the relation on D whose matrix is

$$M_R = \begin{bmatrix} 1 & 0 & 00 & 0 & 1 \\ 0 & 1 & 10 & 1 & 0 \\ 0 & 0 & 01 & 0 & 1 \\ 1 & 0 & 01 & 0 & 1 \\ 0 & 0 & 10 & 1 & 0 \\ 0 & 1 & 00 & 1 & 1 \end{bmatrix}$$

Determine whether R is reflexive, irreflexive, symmetric, asymmetric, antisymmetric, or transitive.

4. In each part, sets A and B and a function from A to B are given. Determine whether the function is one to one or onto (or both or neither).
 - a) $A = \mathbb{R} \times \mathbb{R}$. $B = \mathbb{R}$; $f((a,b)) = a$ (\mathbb{R} - real numbers)
 - b) Let $S = \{1, 2, 3\}$, $T = \{a, b\}$. Let $A = B = S \times T$ and let f be defined by $f(n, a) = (n, b)$, $n = 1, 2, 3$ and $f(n, b) = (1, a)$, $n = 1, 2, 3$.

5. One version of *Ackermann's function* $A(m,n)$ is defined recursively for $m,n \in N$ (natural numbers) by

$$A(0, n) = n+1, n \geq 0;$$

$$A(m, 0) = A(m-1, 1), m > 0; \text{ and}$$

$$A(m, n) = A(m-1, A(m, n-1)), m, n > 0$$

Calculate

a) $A(1,3)$

b) $A(2,3)$