

TUTORIAL 4
FINITE AUTOMATA
DUE DATE: 19th DECEMBER 2019

1. Construct a state transition diagram of a DFA that accepts all strings over $\{a, b, c\}$ that begin with a , contain exactly two b 's, and end with c .
2. Construct a state transition diagram of a DFA that accepts the given set of strings over $\{0, 1\}$:
 - a) contain the substring 00 or 11.
 - b) begin AND end with 00.
 - c) begin OR end with 00.
3. Construct a state transition diagram of a FSM that accepts the given set of strings over $\{a, b\}$:
 - a) contain exactly two b 's.
 - b) at least one b .
 - c) odd number of a 's
4. Suppose that a language, L , is a C programming language style comment such that $L = \{ w \mid w \text{ is a C-style comment} \}$ with input alphabet, $\Sigma = \{ a, b, c, \dots, z, *, / \}$. Examples of accepted and rejected strings are shown in Table 1:

Table 1

Accepted Strings	Rejected Strings
$/*abcz*/$	$/**$
$/**/$	$/**/bca/*aaz*/$
$/***/$	$aab/**/$
$/*abc*xyz*/$	$/*$
$/*a/b*/$	$/ab*/$

Design a DFA that accepts language, L .

5. A description of an automatic telephone answering machine is shown in Table 2. When a call arrives, the phone rings. If the phone is not picked up, then on the third ring, the machine answers. It plays a pre-recorded greeting requesting that the caller leave a message, then records the caller's message, and then automatically hangs up. If the phone is answered before the third ring, the machine does nothing.

Table 2

States		Input		Output	
q_0	idle (nothing is happening)	i_1	incoming ringing signal	0	default output when there is nothing interesting to say
q_1	one ring has arrived	i_2	a telephone is picked up	1	answer the phone and start the greeting message
q_2	two rings have arrived	i_3	greeting message is finish playing	2	start recording the incoming message
q_3	playing the greeting message	i_4	end of message detected	3	recorded an incoming message
q_4	recording the message	i_5	no input of interest		

a) Construct a state transition table by completing table below.

	f_s					f_o				
	i_1	i_2	i_3	i_4	i_5	i_1	i_2	i_3	i_4	i_5
q_0										
q_1										
q_2										
q_3										
q_4										

b) Based on answer in (a), construct a state transition diagram for the telephone answering machine.