

FINAL EXAMINATION SEMESTER I 2010/2011

SCR1013

SUBJECT CODE :

SUBJECT NAME : DIGITAL LOGIC

YEAR/COURSE : SCR / SCV / SCI / SCJ / SCD

DURATION : 2 HOURS 30 MINUTES

DATE

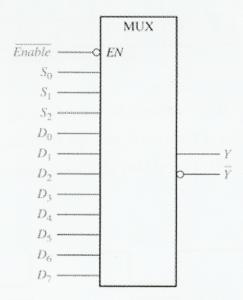
VENUE :

INSTRUCTIONS TO CANDIDATES:

- 1. Please FILL in your particulars in the answer booklet.
- 2. The paper consists of two parts: PART A and PART B.
- 3. Part A has 20 questions. Answer ALL questions of PART A in the objective answer sheet on page 14
- 4. Part B has 3 questions. Question marked with need to be answered on Part B Answer sheet on page 15 to 17. Answer ALL other questions of PART B in the given answer booklet.

Name	ender has lie date maps pan
Matric No.	
Year/Course	* 1 2 3 4 / SCR / SCV / SCI / SCJ
Section	* 01 02 03 04 05 06
Lecturer's Name	* EN. MOHD FO'AD / EN. ABD. BAHRIM / EN. ISMAIL FAUZI

PARTB: SUBJECTIVE QUESTIONS


Answer all questions on the answer book provided.

- 1. a) Two binary numbers A and B are given as, $A_2 A_1 A_0 = 101$ and $B_2 B_1 B_0 = 110$.
 - a) Draw the block diagram of parallel adder to solve the equation X = A + B.

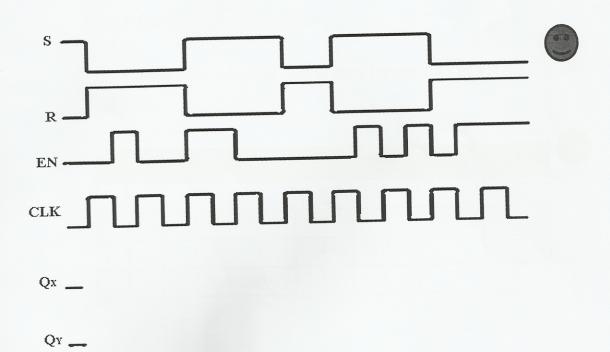
[4M]

- b) Label the diagram with appropriate value of inputs and output. Indicate the MSB and LSB. [3M]
- c) What is the value of X in binary? [1M]

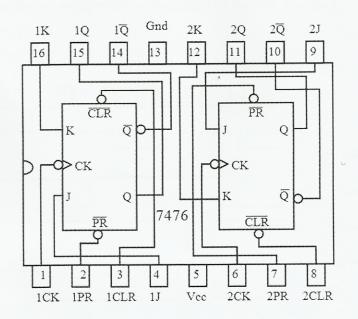
 Note: MSB = Most Significant Bit, LSB = Least Significant Bit.
- b) 74LS151 IC is a 1 of 8 Multiplexer and its symbol is shown in the figure below.

- i) What is the purpose of a multiplexer? [1M]
- ii) Pins of the IC are categorised into 4 categories such as Enable Pin, Data Selector Pin, Input Data Pin and Output Data Pin.Complete the table below by write-in all of 13 pin labels from figure above into its correct category.[3M]

Pin Category	Label
Enable Pin	EN
Output Data Pin	
Data Selector Pin	
Input Data Pin	•


iii) Complete the table below.

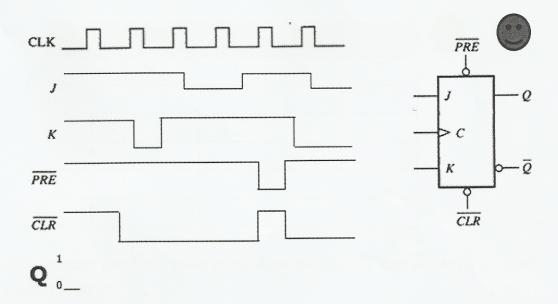
[5M]


\overline{EN}	D_0	D_{I}	D_2	D_3	D_4	D_5	D_6	D_7	S_2	S_1	S_0	Y	\overline{Y}
0	0	1	0	1	1	1	1	1	0	1	1		
0	1	0	1	0	1	1	0	0	1	1	0		
0	0	1	1	1	0	1	0	1	1	1	1		
1	0	1	1	0	0	1	1	0	0	1	0		
0	0	1	1	0	1	1	0	1	1	0	1		

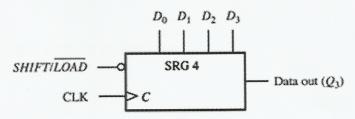
Note: Hi-Z = neither 0 nor 1 logic

2. a) You are given SR gated latch and SR flip-flop. Q_X is the output of SR gated latch and Q_{Y} is the output of SR flip-flop. If the clock is negative edge triggered, draw [6M] Q_X and Q_Y . The initial value of Q_X and Q_Y are LOW.

b) You are given IC 74LS76 as follows:



- i) List the Asynchronous and Synchronous inputs. Arrange the priority execution based on the listed input. [3M]
- ii) Using single JK flip-flop, draw the circuit for the following. [6M]
 - i. D flip-flop
 - ii. T flip-flop
 - iii. Complete the following table to show the operation of a D and T flip-flop


CLK		CLR	D	T	Q_{D}	Q _T
†	0	1	0	0	State of the state	
†	1	1	0	1		
↑	1	0	1	0		
1	1	1	1	1		

iii) Determine the **Q waveform** relative to the clock if the signals shown in the following figure are applied to the inputs of the J-K flip-flop. Assume that Q is initially LOW. [5M]

3. Questions referring to a shift register below.

a) What is the name of the shift register?

[1M]

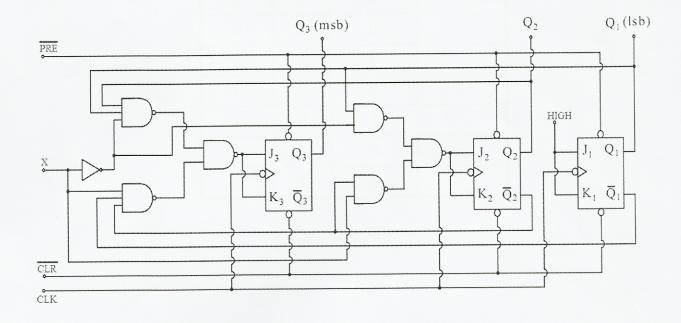
b) If a nibble data 1101 is to be loaded and shifted by the circuit, complete the following table. Initial value of $Q_3 = 0$. [4M]

SHIFT / LOAD	CLK	D_0	D_1	D ₂	D_3	Q ₃	
0	_						
1	1						
1	1						
1	1						

4. a) Design a 4-bit ring counter using JK flip-flop.

[4M]

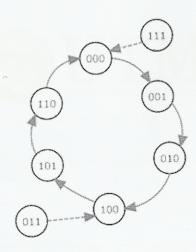
b) Show the output of the 4-bit ring counter that you have designed in the following table. [5M]


CLK	Q_3	Q ₂	Q_1	Q_0
-	1	0	0	0
1				
1				
↑				
†				
↑				

- c) How to make the initial value of the 4-bit ring counter that you have designed equals to 1000_2 ? [2M]
- d) Draw the state diagram of the designed ring counter and determine its MOD.

[4M]

5. Questions referring to a circuit in figure below.


- a) How to make the initial value of the output $Q_3Q_2Q_1$ equals to 0? [1M]
- b) If the propagation delay of a NAND gate is 20ns, an inverter 10ns and JK flip-flop 40ns, determine the maximum frequency of the clock to guarantee the proper counting sequence. [3M]
- c) Draw the state diagram
 - i) for three states only starting from state 000_2 when X = 0. [6M]
 - ii) for three states only starting from state 101_2 when X = 1. [6M]
- 6 a) Comparing a synchronous counter to an asynchronous counter
 - i) What is the difference between a synchronous counter and an asynchronous counter? [1M]
 - ii) Give one advantage of a synchronous counter. [1M]
 - b) i) Fill in the Next State column in the table below [2M]
 - ii) Use the completed table, produce an Excitation table for JK flip-flop.

[3M]

FF St	ate	Present State	Next State
J	K	Q_{α}	Q_{n+1}
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

c) i) Design a synchrous counter using JK flip-flop that will have a state diagram as in figure below. Show all your design steps. [10M]

ii) Add a switch to your designed circuit from (5.c.i) and label it as RESET. Show the connection of the switch so that the counter will move to state 110₂ when RESET switch is pressed. [3M]