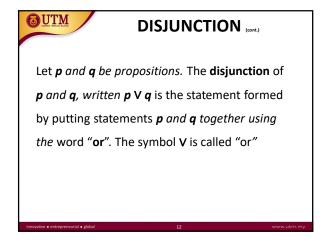
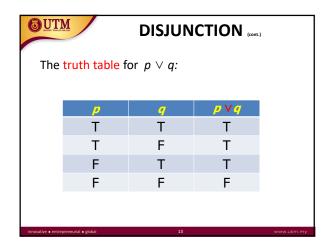
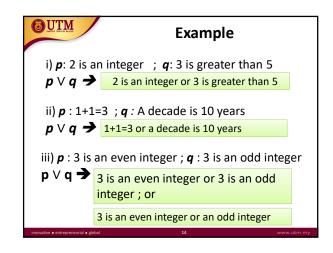
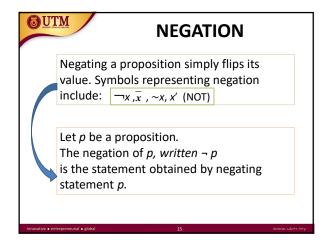


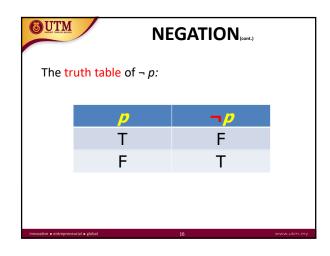
• Compound propositions formed in English with the word "or",
• Formed in logic with the caret symbol ("∨"), and,
• True when one or both participating propositions are true.

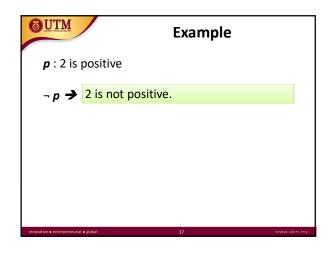


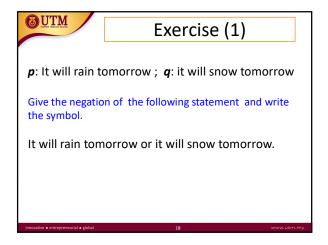


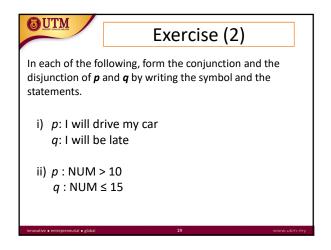


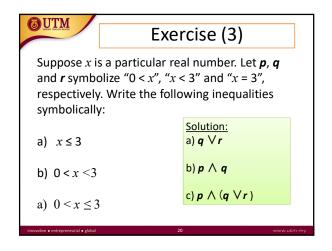


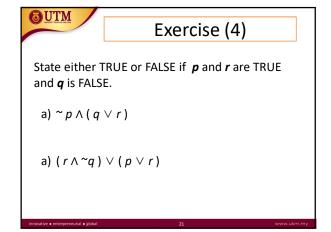


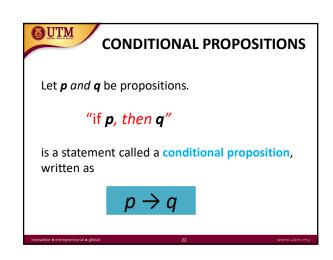


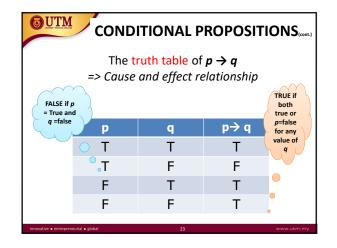


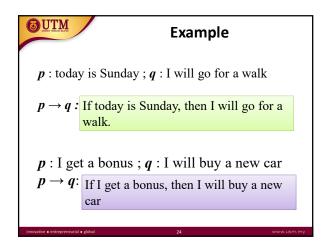


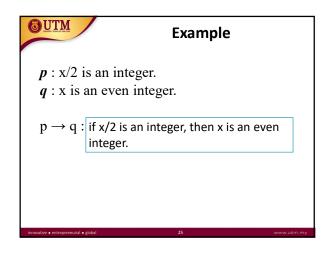




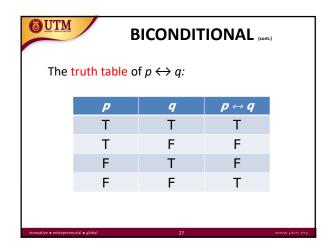


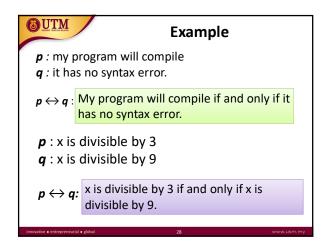


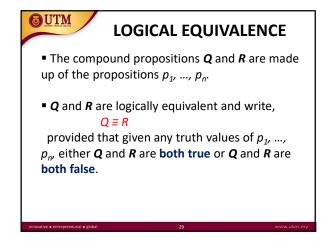


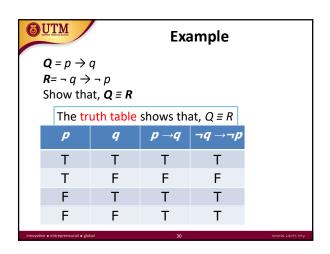


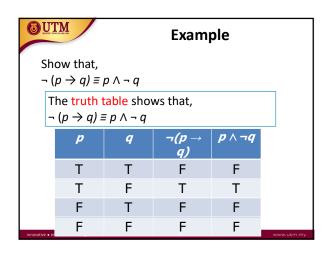


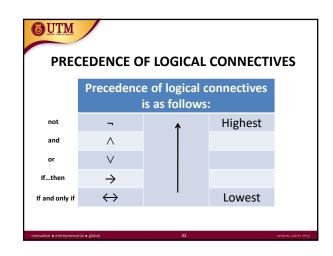


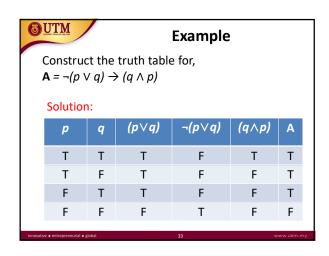


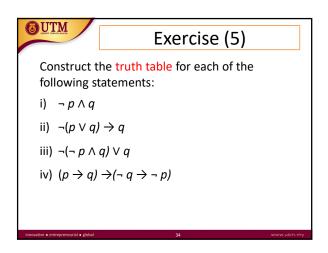












LOGIC & SET THEORY

Logic and set theory go very well togather. The previous definitions can be made very succinct: $x \notin A \text{ if and only if } \neg(x \in A)$ $A \subseteq B \text{ if and only if } (x \in A \to x \in B) \text{ is True}$ $x \in (A \cap B) \text{ if and only if } (x \in A \land x \in B)$ $x \in (A \cup B) \text{ if and only if } (x \in A \land x \notin B)$ $x \in A \triangle B \text{ if and only if } (x \in A \land x \notin B)$ $x \in A \triangle B \text{ if and only if } (x \in A \land x \notin B) \lor (x \in B \land x \notin A)$ $x \in A' \text{ if and only if } \neg(x \in A)$ $X \in P(A) \text{ if and only if } X \subseteq A$

