
07: POINTERS

Programming Technique I

(SCSJ 1013)

Topic Outline

• 1 - Getting the Address of a Variable

• 2 - Pointer Variables

• 3 - The Relationship Between Arrays and Pointers

• 4 - Pointer Arithmetic

• 5 - Initializing Pointers

• 6 - Comparing Pointers

• 7 - Pointers as Function Parameters

• 8 - Dynamic Memory Allocation

• 9 - Returning Pointers from Functions

1- Getting the Address of a Variable

Addresses and Pointers

Address:
 A uniquely defined memory location which is

assigned to a variable.

 Example - a positive integer value

Post office box number
78

Individual name
John Ruiz

Contents
Catalog

Memory Address
66572

Identifier
X

Contents
105

<An analogy with post box>

Notation for Memory Snapshot

Memory Address Identifier Contents

66572 X 105

Memory Address 66572

ContentsIdentifier X 105

Getting the Address of a Variable

 Each variable in program is stored at a unique address

 Use address operator & to get address of a variable:

int num = -99;

cout << # // prints address

// in hexadecimal

Example 1.1

#include <iostream>

using namespace std;

int main()

{

int x=25;

cout<<"The address of x is= "<<&x<<endl;

cout<<"The value in x is "<< x<<endl;

}

Result of Example 1.1

The address of x is 0x8f05

The value in x is 25;

x 25

Exercise 1

• Type & execute the following program

• Check with your friend the address displayed.

#include <iostream>

using namespace std;

int main()

{

int x=25;

cout<<"The address of x is= "<<&x<<endl;

cout<<"The value in x is "<< x<<endl;

}

2 - Pointer Variables

Pointer Variables

• Pointer variable : Often just called a pointer, it's a

variable that holds an address

• Because a pointer variable holds the address of another

piece of data, it "points" to the data

• Pointer variables are yet another way using a memory

address to work with a piece of data.

• This means you are responsible for finding the address

you want to store in the pointer and correctly using it.

Pointer Variables (cont.)

• Definition:

int *intptr;

• Read as:

“intptr can hold the address of an int”

• Spacing in definition does not matter:

int * intptr; // same as above

int* intptr; // same as above

Pointer Variables (cont.)

• Assigning an address to a pointer variable:

int *intptr;

intptr = #

• Memory layout: num intptr

25 0x4a00

address of num: 0x4a00

Pointer Variables (cont.)

int a, b, *ptr;
ptr = &a;

int a, b, *ptr = &a;
or

ptr

0 ba 0

Example 2.1

The Indirection Operator

• The indirection operator (*) dereferences

a pointer.

• It allows you to access the item that the

pointer points to.

int x = 25;

int *intptr = &x;

cout << *intptr << endl;

This prints 25.

Pointer Variables (cont.)

int a = 5, b = 9,

*ptr = &a;

b = *ptr;

5 5a b

ptr

b=*ptr : b is assigned the value pointed to by ptr

5 9a b

ptr

Pointer Variables (cont.)

int a = 5, b = 9,

*ptr = &a;

*ptr = b;

5 9a b

ptr

9 9a b

ptr

*ptr = b: the value pointed to by ptr is assigned the
value in b.

Example 2.2

Exercise 2

• Give memory snapshots after each of

these sets of statements are executed.

Exercise 3

• Refer to Exercise 10.14 no 3 (b) pg. 297.

• Solve the problem.

Something like Pointers:
Arrays

• We have already worked with something
similar to pointers, when we learned to
pass arrays as arguments to functions.

• For example, suppose we use this
statement to pass the array numbers to
the showValues function:

showValues(numbers, SIZE);

Something like Pointers:
Arrays

The values parameter, in the

showValues function, points to the

numbers array.

C++ automatically

stores the address
of numbers in the

values parameter.

Something like Pointers:
Reference Variables

• We have also worked with something like pointers

when we learned to use reference variables.

• Suppose we have this function:

void getOrder(int &donuts)

{

cout << "How many doughnuts do you want? ";

cin >> donuts;

}

• And we call it with this code:
int jellyDonuts;

getOrder(jellyDonuts);

Something like Pointers:
Reference Variables

The donuts parameter, in the

getOrder function, points to the

jellyDonuts variable.

C++ automatically

stores the address
of jellyDonuts

in the donuts

parameter.

3 - The Relationship Between
Arrays and Pointers

The Relationship Between
Arrays and Pointers

• Array name is starting address of array

int vals[] = {4, 7, 11};

starting address of vals: 0x4a00

cout << vals; // displays 0x4a00

cout << vals[0]; // displays 4

4 7 11

The Relationship Between
Arrays and Pointers

int x[5], *ptr_x;

ptr_x = &x[0];

? ? ? ? ?

ptr_x

x[0] x[1] x[2] x[3] x[4]

Memory
allocation

The memory location for x[1] is immediately
follow the memory location of x[0].

The Relationship Between
Arrays and Pointers (cont.)

• Array name can be used as a pointer

constant:

int vals[] = {4, 7, 11};

cout << *vals; // displays 4

• Pointer can be used as an array name:

int *valptr = vals;

cout << valptr[1]; // displays 7

Example 3.1

Exercise 4

• Refer to previous slide in Program 9-5.

• Print the third element in the array using
pointer number.

4 - Pointers Arithmetic

Pointers Arithmetic

• Operations on pointer variables:

Operation Example
int vals[]={4,7,11};

int *valptr = vals;

++, -- valptr++; // points at 7

valptr--; // now points at 4

+, - (pointer and int) cout << *(valptr + 2); // 11

+=, -= (pointer

and int)

valptr = vals; // points at 4

valptr += 2; // points at 11

- (pointer from pointer) cout << valptr–val; // difference

//(number of ints) between valptr

// and val

Example 4.1

Pointers in Expressions
Given:

int vals[]={4,7,11}, *valptr;

valptr = vals;

What is valptr + 1?

It means (address in valptr) + (1 * size

of an int)

cout << *(valptr+1); //displays 7

cout << *(valptr+2); //displays 11

Must use () as shown in the expressions

Pointers in Expressions

• depends on the machine used

• depends on the variable type

• For examples,

– Short integers (2 byte)

• Beginning : ptr = 45530

• After ptr++ : ptr = 45532

– Floating point values (4 byte)

• Beginning : ptr = 50200

• After ptr++ : ptr = 50204

Array Access

• Array elements can be accessed in many ways:

Array access method Example

array name and [] vals[2] = 17;

pointer to array and [] valptr[2] = 17;

array name and

subscript arithmetic

*(vals + 2) = 17;

pointer to array and

subscript arithmetic

*(valptr + 2) = 17;

Array Access

Exercise 5

• Refer to Exercise 10.14 No. 4(b) in pg. 298.

• Solve the problem.

5 - Initializing Pointers

Initializing Pointers

• Can initialize at definition time:

int num, *numptr = #

int val[3], *valptr = val;

• Cannot mix data types:

double cost;

int *ptr = &cost; // won’t work

• Can test for an invalid address for ptr

with:

if (!ptr) ...

Exercise 6

6 - Comparing Pointers

Comparing Pointers

• Relational operators (<, >=, etc.) can be
used to compare addresses in pointers

• Comparing addresses in pointers is not
the same as comparing contents pointed
at by pointers:
if (ptr1 == ptr2) // compares

// addresses

if (*ptr1 == *ptr2) // compares

// contents

Exercise 7
#include <iostream>

using namespace std;

int main()

{

int value=7;

int *ptr1 = &value;

int *ptr2 = &value;

if (ptr1==ptr2){

cout << ”Pointers are Equal”;

}else{

cout << "Pointers are Not Equal”;}

return 0;

}

Pointers are Equal

7 - Pointers as Function Parameters

Pointers as Function Parameters

• A pointer can be a parameter

• implements call-by-address references

• allows to modify the values by statements within

a called function

• Requires:
1) asterisk * on parameter in prototype and heading
void getNum(int *ptr); // ptr is pointer to int

2) asterisk * in body to dereference the pointer

cin >> *ptr;

3) address as argument to the function
getNum(&num); // pass address of num to getNum

Example 7.1

void swap(int *x, int *y)

{ int temp;

temp = *x;

*x = *y;

*y = temp;

}

int num1 = 2, num2 = -3;

swap(&num1, &num2);

Example 7.2

Example 7.2 (cont.)

Exercise 8

• Refer to Exercise 10.14 No. 5 in pg. 298.

• Solve the problem.

Pointers to Constants

• If we want to store the address of a constant in a

pointer, then we need to store it in a pointer-to-

const.

• Example: Suppose we have the following

definitions:
const int SIZE = 6;

const double payRates[SIZE] =

{ 18.55, 17.45, 12.85,

14.97, 10.35, 18.89 };

• In this code, payRates is an array of constant

doubles.

Pointers to Constants

• Suppose we wish to pass the payRates
array to a function? Here's an example of
how we can do it.

void displayPayRates(const double *rates, int size)

{

for (int count = 0; count < size; count++)

{

cout << "Pay rate for employee " << (count + 1)

<< " is $" << *(rates + count) << endl;

}

}

The parameter, rates, is a pointer to const double.

Declaration of a
Pointer to Constant

Constant Pointer

• A constant pointer is a pointer that is

initialized with an address, and cannot

point to anything else.

• Example

int value = 22;

int * const ptr = &value;

Declaration of a
Constant Pointers

Declaration of a
Constant Pointers

Constant Pointer to Constants

• A constant pointer to a constant is:

– a pointer that points to a constant

– a pointer that cannot point to anything except

what it is pointing to

• Example:
int value = 22;

const int * const ptr = &value;

Constant Pointer to Constants

8 - Dynamic Memory Allocation

Dynamic Memory Allocation

• Can allocate storage for a variable while

program is running

• Computer returns address of newly

allocated variable

• Uses new operator to allocate memory:

double *dptr;

dptr = new double;

• new returns address of memory location

Dynamic Memory Allocation

• Can also use new to allocate array:
const int SIZE = 25;
arrayptr = new double[SIZE];

• Can then use [] or pointer arithmetic to
access array:

for(i = 0; i < SIZE; i++)

arrayptr[i] = i * i;

or

for(i = 0; i < SIZE; i++)

*(arrayptr + i) = i * i;

• Program will terminate if not enough
memory available to allocate

Releasing Dynamic Memory

• Use delete to free dynamic memory:

delete fptr;

• Use [] to free dynamic array:

delete [] arrayptr;

• Only use delete with dynamic memory!

Example 7.8

Example 7.8 (cont.)

Example 7.8 (cont.)

Exercise 9
• Given the following program with 3 errors. Rewrite the

program to store the power value of the array’s index
and print the values.

int main(){

const int SIZE = 25;

int *arrayptr;

arrayptr = new double[SIZE];

for(int i = 0; i < SIZE; i++)

*arrayptr[i] = i * i;

for(int i = 0; i < SIZE; i++)

cout <<*arrayptr + i<<endl;

return 0;

}

9 - Returning Pointers from Functions

Returning Pointers from
Functions

• Pointer can be the return type of a

function:

int* newNum();

• The function must not return a pointer to a

local variable in the function.

• A function should only return a pointer:

– to data that was passed to the function as an

argument, or

– to dynamically allocated memory

Example 7.9

