Exercise 6.1: Determine the sum (Σ) and the output carry ($\mathrm{C}_{\text {out }}$) of a half adder for each set of input bits:

Solution:

			$\sum=A \oplus B$	$C_{\text {out }}=A B$
	Input,	Input, B	Sum (\sum)	Output carry ($\mathrm{C}_{\text {out }}$)
i)	0	1	1	0
ii)	0	0	0	0
iii)	1	0	1	0
iv)	1	1	0	1

Exercise 6.2: A full adder has $\mathrm{C}_{\text {in }}=1$. What are the sum (Σ) and the output carry ($C_{\text {out }}$) when $A=1$ and $B=1$?

Solution 6.2:

$$
\begin{aligned}
& A=1, B=1, \text { and } C_{\text {in }}=1 \\
& 1+1+1=1 \text { with carry } 1 \\
& \sum=1, C_{\text {out }}=1
\end{aligned}
$$

Parallel Adder

IUIUW.utm.my

MSI chip: (74LS283)
4-bit parallel adder

Comparator

IJIUW.utm.my
Example: Compare the equality for these 2-bits binary $\mathrm{A}=10_{2}$ and $\mathrm{B}=11_{2}$
General format: Binary number $A \rightarrow A_{1} A_{0}$ Binary number $B \rightarrow B_{1} B_{0}$

Comparator

Solution:

(a) 10 and 10

Comparator

IUIUW.utm.my

MSI chip: (74LS85)
4-bit Comparator

7485

Figure: Logic symbol for a 4-bit comparator with inequality indication.

Comparator

UUIU.utm.my
Exercise 6.3: What are the comparator outputs when binary number of $A=1011$ and $B=1010$ applied as the inputs ?

Solution 6.3:

Step 1: Compare A_{3} and $\mathrm{B}_{3} \rightarrow$ Number $\mathrm{A}=\mathrm{B}$; compare next bits

Step 2: Compare A_{2} and $B_{2} \rightarrow$ Number $A=B$; compare next bits.

Step 3: Compare A_{1} and $B_{1} \rightarrow$ Number A $=B$; compare next bits.

Step 4: Compare A_{0} and $B_{0} \rightarrow$ Number $A>B$

$$
\begin{gathered}
A>B=1, A<B=0, A=B=0 \\
\text { when } A=1011 \text { and } B=1010
\end{gathered}
$$

Decoder

Exercise 6.4: Develop the logic required to detect the binary code 10010 and produce an active-LOW output.

Solution 6.4:

Decoder

Exercise 6.5: When the output is active-HIGH for each of decoding gates in the Figure, what is the binary code appearing on the inputs? The MSB is A_{3}.

Decoder

IUIUW.utm.my

Solution 6.5:

(a) $\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}=1110$
(b) $\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}=1000$

IUIJW.utm.my

Decoder IC:

 4-Bit Decoder

Decoder:
4-Bit Decoder

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	1	0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
0	1	0	0	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1
0	1	0	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1
0	1	1	0	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1
1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
1	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1
1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1
1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0

แJVU.utm.my

4-Bit Decoder

Example:

Port Address: 0100_{2} I/O Request : LOW(0)

I/O Port: Scanner
 with only four address lines shown.

Encoder

wIJI.utm.my
Exercise 6.6: Suppose, HIGH are applied to input 2 and 9 of the circuit
(a) What are the states of the output lines?
(b) Does this represent a valid BCD code?
(c) What is the restriction on the encoder logic?

Solution 6.6:

(a) $A_{3}=0, A_{2}=0, A_{1}=1, A_{0}=0$ $A_{3}=1, A_{2}=0, A_{1}=0, A_{0}=1$
(b) YES. The valid BCD code is between 0-9
(c) Only one input can be HIGH; the rest must be LOW

