SCSI 1013: Discrete Structure

CHAPTER 6

FINITE AUTOMATA

UTM

Deterministic Finite Automata (DFA)

- In computer science, we study different types of computer languages, such as Basic, Pascal, and C++.
- We will discuss a type of a language that can be recognized by special types of machines.
- A deterministic finite automaton (pl. automata) is a mathematical model of a machine that accepts languages of some alphabet.

Deterministic Finite Automata (DFA)

- Deterministic Finite Automaton is a quintuple $M=\left\{S, l, q_{0}, f, F\right\}$ where,
S is a finite nonempty set of states
I is the input alphabet (a finite nonempty set of symbols)
q_{0} is the initial state
f_{s} is the state transition function
F is the set of final states, subset of S.
\square Example 1
- Let $M=\left\{\left\{q_{0}, q_{1}, q_{2}\right\},\{0,1\}, q_{0}, f_{s^{\prime}},\left\{q_{2}\right\}\right\}$ where f_{s} is defined as follows:

$$
\begin{array}{ll}
f_{s}\left(q_{0}, 0\right)=q_{1}, & f_{s}\left(q_{1}, 1\right)=q_{2} \\
f_{s}\left(q_{0}, 1\right)=q_{0}, & f_{s}\left(q_{2}, 0\right)=q_{0} \\
f_{s}\left(q_{1}, 0\right)=q_{2}, & f_{s}\left(q_{2}, 1\right)=q_{1}
\end{array}
$$

- Note that for M:
$S=\left\{a_{0}, a_{1}, a_{2}\right\}, l=\{0,1\}, F=\left\{a_{2}\right\}$
q_{0} is the initial state

Example 1 (oont)

- The state transition function of a DFA is often described by means of a table, called a transition table.

f_{s}	0	1
q_{0}	q_{1}	q_{0}
q_{1}	q_{2}	q_{2}
q_{2}	q_{0}	q_{1}

\square

- The transition diagram of this DFA is,

- The transition diagram of this DFA is,

DFA - with extended transition function for M

- Let $M=\left\{S, I, q_{0}, f, F\right\}$ be a DFA and w is an input string,
- W is said to be accepted by M if

$$
\mathrm{f}_{\mathrm{s}}^{*}\left(\mathrm{q}_{0}, \mathrm{w}\right) \in \mathrm{F}
$$

- $f_{s}{ }^{*}$ - extended transition function for M

(C) UTM

UTM

 Example 5 (cont.)

- Write the set of final states. \square
- Write the transition table for this DFA

(c) UTM
Example 5 (cont.)
Which of the strings are accepted by M ?
$0111010,00111, \quad 111010$,
$0100, \quad 1110$

(0) UTM Example 6 - Solution (cont.)
set of states, $S=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$ set of input symbols, $\quad I=\{a, b\}$ initial state, q_{0} final state, q_{1}
www.utm.my innovative \bullet entrepreneurial \bullet global

(C) UTM	Example 6 - Solution (cont.)			
State transition function				
	f_{5}	a	b	
	q_{0}			
	q_{1}		q_{0}	
	q_{2}			
	a_{3}			
www.utm.my in				novative • entrepreneuria

(C) UTM

Exercise 1

Let $M=\left(S, I, q_{0}, f_{5}, F\right)$ be the DFA such that $S=\left\{q_{0}, q_{1}, q_{2}\right\}, 1=\{a, b\}, F=\left\{q_{2}\right\}, q_{0}=$ initial state, and f_{s} is given by,

f_{s}	a	b
q_{0}	q_{0}	q_{1}
q_{1}	q_{2}	a_{1}
a_{2}	a_{2}	q_{0}

Draw the state diagram of M.
Which of the strings
abaa, bbbabb, bbbaa dan bababa
are accepted by M ?

The transition diagram of M is,

Construct the transition table of M.
Which of the strings
baba, baab, abab dan abaab
are accepted by M ?

(0) UTM

Exercise 3

Construct a state transition diagram of a DFA M with the input set $\{0,1\}$ such that M accepts only the string 101.

Solution:

Exercise 4

1. Construct DFA machine over input $\mathrm{I}=\{0,1\}$ that accepts, Odd number of 0's
2. Construct DFA that recognise the set of all bit string beginning with 01
3. Construct DFA that recognizes the set of all bit strings that contain exactly three 0's

Finite State Machines (FSM)

- Automata with input as well as output.
- Every state has an input and corresponding to the input the state also has an output.
- These types of automata are commonly called finite state machines.

Finite State Machines (FSM)

- A finite state machine is a sextuple,
$M=\left\{S, I, O, q_{0}, f_{s}, f_{o}\right\}$
where,
S is a finite nonempty set of states
I is the input alphabet
O is the output alphabet
q_{0} is the initial state
f_{s} is the state transition function
f_{0} is the output function.

UTM

Example 1

- Let $M=\left\{S, I, O, q_{0}, f_{5}, f_{0}\right\}$ be the $F S M$
- where,
$S=\left\{a_{0}, q_{1}, q_{2}\right\}$,
$\mid=\{a, b\}$,
$O=\{0,1\}$,
$\mathrm{q}_{0}=$ initial state,
- The f_{s} and f_{0} are =>

- The transition diagram:

Input string: bbab

Output string: $1100 \quad$ Output: 0 Example 1 (cont.)

Input string: bababaa
$a_{0} \xrightarrow[1]{b} q_{0} \xrightarrow[0]{a} q_{1} \xrightarrow[0]{b} q_{2} \underset{0}{a} q_{0} \xrightarrow[1]{b} q_{0} \xrightarrow[0]{a} q_{1} \xrightarrow[1]{a} q_{2}$
Output string: 1000101 Output: 1

Example 2

- Let $M=\left\{S, I, O, q_{0}, f_{S^{\prime}} f_{0}\right\}$ be the $F S M$
- where,
$S=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$,
$\mid=\{a, b\}$,
$O=\{0,1\}$,
$\mathrm{q}_{0}=$ initial state,
a f_{5} and f_{0}

	f_{s}		f_{0}	
	a	b	a	b
q_{0}	q_{0}	q_{2}	0	1
a_{1}	a_{1}	q_{2}	1	0
a_{2}	q_{3}	q_{1}	1	1
q_{3}	q_{3}	q_{3}	1	1

- Draw the transition diagram of M.

- What is the output string if the input string is abbabab?

Based on the given information, answer the following:

- Write the transition table of M.
- What is the output string if the input string is aaabbbb?
- What is the output if the input string is bbbaaaa?
- Is the string aaa accepted by M?
- Which of the strings ba, aabbba, bbbb, aaabbbb are accepted by M ?

Example 3 - Solution

- The transition table of M.

	f_{s}		f_{0}	
	a	b	a	b
a_{0}	a_{1}	q_{3}	0	0
a_{1}	q_{3}	a_{2}	0	1
a_{2}	a_{2}	a_{2}	1	1
a_{3}	a_{4}	q_{3}	1	0
a_{4}	a_{4}	q_{4}	1	1

Solution (cont.)

- What is the output string if the input string is aaabbbb?
$q_{0} \xrightarrow{a} q_{1} \xrightarrow{a} q_{3} \xrightarrow{a} q_{4} \xrightarrow{b} q_{4} \xrightarrow{b} q_{4} \xrightarrow{b} q_{4} \xrightarrow{b} q_{4}$

0	0	1	1	1	1	1

Output string: 0011111

Solution (cont.)

- What is the output string if the input string is bbbaaaa?

- Is the string aaa accepted by M ?

Solution (cont.)

- Which of the strings ba, aabbba, bbbb, aaabbbb are accepted by M?

ba

Example 4

- Consider a vending machine that sells candy and the cost of a candy is 50 cents.
- The machine accepts any sequence of 10-, 20-, or 50 cent coins.
- After inserting at least 50 cents, the customer can press the button to release the candy.

UTM

- If the customer inputs more than 50 cents, the machine does not return the change.
- After selling the candy, the machine returns to initial state.
- Construct a finite state machine that models this vending machine.

Example 4 - Solution

1. List the states, S:

States,
q_{0}, \quad initial state (0)
$\mathrm{a}_{1}, \quad 10$ cents
$q_{2}, \quad 20$ cents
$q_{3}, \quad 30$ cents
$q_{4} . \quad 40$ cents
$q_{5}, \geq 50$ cents
2. List the elements of M :

$$
\begin{aligned}
& S=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\}, \\
& I=\{10,20,50, B\}, \\
& O=\{0,1\}, \\
& q_{0}=\text { initial state },
\end{aligned}
$$

(3) UTM

3. List the f_{s} and f_{0} :

	f_{s}							f_{\circ}
	10	20	50	B	10	20	50	B
q_{0}	q_{1}	q_{2}	q_{5}	q_{0}	0	0	0	0
q_{1}	q_{2}	q_{3}	q_{5}	q_{1}	0	0	0	0
q_{2}	q_{3}	q_{4}	q_{5}	q_{2}	0	0	0	0
q_{3}	q_{4}	q_{5}	q_{5}	q_{3}	0	0	0	0
q_{4}	q_{5}	q_{5}	q_{5}	q_{4}	0	0	0	0
q_{5}	q_{5}	q_{5}	q_{5}	q_{0}	0	0	0	1

4. Draw the transition diagram of M :

UTM

Exercise \#1

Let $M=\left\{S, I, O, q_{0}, f_{s}, f_{o}\right\}$ be a FSM
where,
$S=\left\{q_{0}, q_{1}, q_{2}\right\}, \quad \quad f_{s}$ and f_{0}
| =\{a,b\},
$O=\{0,1\}$,
$\mathrm{q}_{0}=$ initial state,

	f_{s}		f_{o}	
	a	b	a	b
q_{0}	q_{2}	q_{1}	1	1
q_{1}	q_{2}	q_{2}	0	0
q_{2}	q_{1}	q_{2}	1	1

- Draw the transition diagram of M.
- What is the output string if the input string is $a a b b b$?
- What is the output string if the input string is ababab?
- What is the output if the input string is abbbaba?
- What is the output if the input string is bbbababa?

Exercise \#2

Let $M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\},\{a, b, c\}, q_{0}, f_{s},\left\{q_{1}, q_{3}, q_{5}\right\}\right)$ be the Deterministic Finite Automaton (DFA) with state transition function, f_{s} defined as follows:

$f\left(q_{0}, a\right)=q_{1}$	$f\left(q_{0}, b\right)=q_{0}$	$f\left(q_{0}, c\right)=q_{0}$
$f\left(q_{1}, a\right)=q_{1}$	$f\left(q_{1}, b\right)=q_{2}$	$f\left(q_{1}, c\right)=q_{1}$
$f\left(q_{2}, a\right)=q_{2}$	$f\left(q_{2}, b\right)=q_{3}$	$f\left(q_{2}, c\right)=q_{4}$
$f\left(q_{3}, a\right)=q_{3}$	$f\left(q_{3}, b\right)=q_{3}$	$f\left(q_{3}, c\right)=q_{3}$
$f\left(q_{4}, a\right)=q_{4}$	$f\left(q_{4}, b\right)=q_{5}$	$f\left(q_{4}, c\right)=q_{4}$
$f\left(q_{5}, a\right)=q_{5}$	$f\left(q_{5}, b\right)=q_{5}$	$f\left(q_{5}, c\right)=q_{5}$

(a) Draw the transition table for the above machine.
(b) Determine the final state for the input string $a b c c$.
(c) Is the input string $a b c b$ accepted by the DFA?

Let $A=(S, I, O, Z, f, g)$ be a finite state machine (FSM) defined by the transition table shown in Table 1.

Table 1: Transition table of FSM A

	f			g		
State	a	b	c	a	b	c
X	Z	X	Y	1	0	1
Y	X	X	Z	0	1	0
Z	Y	X	Z	1	0	1

(a) Draw the transition diagram of the finite state machine A.
(b) Find the output string for the input string babccaab.
(c) Find the output generated from the input string cabcccba.
(d) Determine whether the input string $a b c b c b c a b c c$ is accepted.

UTM

Exercise

- Pac-Man is an arcade game developed by a young Namco employee named Toru Iwatani and first released in Japan in 1980. It is considered one of the classics of the medium, virtually synonymous with video games, and an icon of 1980s. Pac-Man is one of the few games to have been consistently published for over three decades, having been remade on numerous platforms and spawned many sequels. Re-releases include ported and updated versions of the original arcade game.
- The typical version of Pac-Man is a one player game where he/she manoeuvres the Pac-Man around the maze, attempting to avoid four 'ghosts' characters while eating dots that distributed throughout the maze. Among the dots, there are four super dots that located at four corners of the maze. If the Pac-Man collides with the ghost, he loses one of his three lives and play resumes with the ghosts reassigned to their initial starting location. When PacMan eats a super dot, he is able to chase the ghosts for a few seconds of time before the super dot expires. The game ends when Pac-Man has lost all his three lives. Figure x shows a screenshot of the Pac-Man game.

UTM

Noted that the ghosts in Pac-Man have four behaviors:
$\mathrm{S}_{1} \quad: \quad$ randomly wander the maze
$\mathrm{S}_{2} \quad: \quad$ chase Pac-Man when he is within the line of sight
$\mathrm{S}_{3} \quad: \quad$ avoid Pac-Man when has consumed a super dot
$\mathrm{S}_{4} \quad: \quad$ return to the initial position to restart the game

Exercise (cont)

The inputs are:
A : spot Pac-Man (Pac-Man is within the line of sight)
B : lose Pac-Man (Pac-Man is not within the line of sight)
C : Pac-Man eats super dot
D : super dot expires
E : collides with Pac-Man
F : reach the initial position

The outputs are:
0 : nothing happened
1 : Pac-Man loses his life
2 : number of ghosts reduces by 1

State	Input, f_{s}							Output, f_{0}					
	A	B	C	D	E	F	A	B	C	D	E	F	
S_{1}				$\mathrm{~S}_{1}$		$\mathrm{~S}_{1}$				0		0	
pS_{2}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{3}$				0	0	0				
$\mathrm{~S}_{3}$		$\mathrm{~S}_{1}$					0	0	0	0		0	
$\mathrm{~S}_{4}$			0	0	0	0							

