

- A recurrence relation is an equation that defines a sequence {a_n, a_{n+1}, ...} based on a rule that gives the next term as a function of one or more of the previous term in the sequence for all integers n with n≥ n₀, () a₀, a₁,...
- A sequence is called a **solution** of a recurrence relation if it terms satisfy the recurrence relation.

Simple Recurrence Relation

The simplest form of a **recurrence relation** is the case where the next term depends only on the immediately previous term.

3, 8, 13, 18, 23, . . .

The above sequence shows a pattern, given initial condition, $a_1 = 3$:

3, 3+5, 8+5, 13+5, 18+5, ... a_1 , a_2 , a_3 , a_4 , a_5 , ...

generated from an equation:

$$a_n = a_{n-1} + 5, \qquad n \ge 2$$

n_{th} term of a sequence

Recurrence relation can be used to compute any n-th term of the sequence, given the initial condition, a_0 :

$$a_{n=}a_{n-1} + 5$$
, $n \ge 2$

3, 8, 13, 18, 23, **28**, *a*_{*n*-1} + 5, . . .

$$a_{2=}a_{1} + 5, 3 + 5 = 8$$

$$a_{3=}a_{2} + 5, 8 + 5 = 13$$

$$a_{4=}a_{3} + 5, 13 + 5 = 18$$

$$\vdots$$

$$a_{6=}a_{5} + 5, 23 + 5 = 28$$

Consider the following sequence:

3, 9, 27, 81, 243, . . .

The above sequence shows a pattern:

 3^1 , 3^2 , 3^3 , 3^4 , 3^5 , ... a_1 , a_2 , a_3 , a_4 , a_5 , ...

Recurrence relation is defined by:

$$a_n = 3^n, n \ge 1$$

Given initial condition, $a_0 = 1$ and recurrence relation:

$$a_n = 1 + 2a_{n-1}$$
 , $n \ge 1$

First few sequence are:

$$a_1 = 1 + 2 (1) = 3$$

 $a_2 = 1 + 2(3) = 7$
 $a_3 = 1 + 2(7) = 15$

1, 3, 7, 15, 31, 63, ...

Given initial condition, $a_0 = 1$, $a_1 = 2$ and recurrence relation:

$$a_n = 3(a_{n-1} + a_{n-2}), n \ge 2$$

First few sequence are:

$$a_2 = 3(2 + 1) = 9$$

 $a_3 = 3(9 + 2) = 33$
 $a_4 = 3(33 + 9) = 126$

Exercise

1)
$$a_n = 6a_{n-1} - 9a_{n-2}$$
, where $a_0 = 2$, $a_1 = 3$

2)
$$a_n = 2a_{n-1} - a_{n-2}$$
, where $a_0 = 5$, $a_1 = 3$

For a photo shoot, the staff at a company have been arranged such that there are 10 people in the front row and each row has 7 more people than in the row in front of it. Find the recurrence relation and compute number of staff in the first 5 rows.

Example 4 - Solution

Notice that the difference between the number of people in successive rows is a constant amount.

This means that the n_{th} term of this sequence can be found using:

$$a_n = a_{n-1} + 7$$
, $n \ge 2$ with $a_1 = 10$

Example 4 - Solution

Number of staff in the first 5 rows:

$$a_1 = 10$$
,
 $a_2 = a_1 + 7$, $10 + 7 = 17$
 $a_3 = a_2 + 7$, $17 + 7 = 24$
 $a_4 = a_3 + 7$, $24 + 7 = 31$
 $a_5 = a_4 + 7$, $31 + 7 = 38$

10, 17, 24, 31, 38

Find a recurrence relation and initial condition for

```
1, 5, 17, 53, 161, 485, ...
```

Solution:

Look at the differences between terms:

4, 12, 36, 108, ...

the difference in the sequence is growing by a factor of 3.

Example 5 - Solution

However the original sequence is not.

1(3)=**3**, 5(3)=**15**, 17(3)=**51**, . . .

1, 5, 17, 53, 161, 485, ...

It appears that we always end up with 2 less than the next term.

So, the recurrence relation is defined by:

 $a_n = 3(a_{n-1}) + 2$, $n \ge 1$, with initial condition, $a_0 = 1$

A depositor deposits RM 10,000 in a savings account at a bank yielding 5% per year with interest compounded annually. How much money will be in the account after 30 years? Let P_n denote the amount in the account after *n* years.

Example 6 - Solution

Derive the following **recurrence relation**:

$$P_n = P_{n-1} + 0.05P_{n-1} = 1.05P_{n-1}$$

Where, P_n = Current balance and P_{n-1} = Previous year balance and 0.05 is the compounding interest.

Example 6 - Solution

Initial condition, $P_0 = 10,000$. Then,

$$\begin{split} P_1 &= 1.05 P_0 \\ P_2 &= 1.05 P_1 = (1.05)^2 P_0 \\ P_3 &= 1.05 P_2 = (1.05)^3 P_0 \\ \cdots \\ P_n &= 1.05 P_{n-1} = (1.05)^n P_0 \ , \end{split}$$

now we can use this formula to calculate n_{th} term without iteration

Example 6 - Solution

Let us use this formula to find P_{30} under the initial condition $P_0 = 10,000$:

$$P_{30} = (1.05)^{30}(10,000) = 43,219.42$$

After 30 years, the account contains RM 43,219.42.

Exercise

Consider the following sequence:

1, 5, 9, 13, 17

Find the recurrence relation that defines the above sequence.

Exercise

A basketball is dropped onto the ground from a height of 15 feet. On each bounce, the ball reaches a maximum height 55% of its previous maximum height.

a)Write a recursive formula, a_n , that completely defines the height reached on the n_{th} bounce, where the first term in the sequence is the height reached on the ball's first bounce.

b)How high does the basketball reach after the 4_{th} bounce? Give your answer to two decimal places.