

So, in Mathematics we use more precise language:

- If the order doesn't matter, it is a Combination.
- Combination means selection of things.
- The word selection is used, when the order of things has no importance.
- If the order does matter, it is a Permutation.
- Permutation means arrangement of things.
- The word arrangement is used, if the order of things is considered.

- In this case, you have to reduce the number of available choices each time.
- For example, what order could 16 pool balls be in?
- After choosing, say, number "14" you can't choose it again.

(0)UTM

- But maybe you don't want to choose them all, just 3 of them, so that would be only:

$$
16 \times 15 \times 14=3,360
$$

- In other words, there are 3,360 different ways that 3 pool balls could be selected out of 16 balls.

© 0 UTM

- So, if you wanted to select all of the billiard balls, the permutations would be:
$16!=20,922,789,888,000$

Example 1

- There are 6 permutations of three elements
- If the elements are denoted A, B, C, the six permutations are
- ABC, ACB, BAC, BCA, CAB, CBA
- 3! $=3.2 \cdot 1=6$

(C) UTM

- There are two cases of circular-permutations:
- If clockwise and anti clockwise orders are different, then total number of circularpermutations is given by $(\boldsymbol{n}-1)$!
- If clockwise and anti clockwise orders are taken as not different, then total number of circularpermutations is given by

$$
\frac{(n-1)!}{2!}
$$

- Let's consider that 4 persons A, B, C, and D are sitting around a round table
- Shifting A, B, C, D, one position in anticlockwise direction, we get the following arrangements:-

(C) UTM

- Thus, we use that if 4 persons are sitting at a round table, then they can be shifted four times.
- But these four arrangements will be the same, because the sequence of A, B, C, D, is same.

(0) UTM

- Hence, the number of circular permutations is

$$
P_{n}=(n-1)!
$$

- The number is ($n-1$)! instead of the usual factorial, n ! since all cyclic permutations of objects are equivalent because the circle can be rotated.

(C) UTM

- Thus, the number of permutations of 4 objects in a row $=4$!
- Where as the number of circular permutations of 4 objects is $(4-1)!=3$!

Example 1

- Suppose we are expecting ten people for dinner.
- How many ways can we seat them around a circular table?

12 3 4 5 6 7 8 9 10

More Examples

- How many circular permutation can you form with 10 objects

$$
(n-1)!=(10-1)!=9!=362880
$$

- How many ways can four boys and two girls be seated at a round table?

$$
(n-1)!=(6-1)!=5!=120
$$

(3) UTM

Exercise

- In how many ways can five people A, B, C, D, and E be seated around a circular table if
a) A and B must sit next to each other
b) A and B must not sit next to each other
c) A and B must be together and CD must be together

© UTM

- Our "order of 3 out of 16 pool balls example" would be:

$$
P(16,3)=\frac{16!}{(16-3)!}=\frac{16!}{13!}=\frac{20,922,789,888,000}{6,227,020,800}=3,360
$$

- which is just the same as:

$$
16 \times 15 \times 14=3,360
$$

Example 1

- Back to our billiard balls example.
- If you wanted to select just 3 , then you have to stop the multiplying after 14 . How do you do that? There is a neat trick ... you divide by 13! ...

$$
\frac{16 \times 15 \times 14 \times 13 \times 12 \times \ldots}{13 \times 12 \times \ldots}=16 \times 15 \times 14=3,360
$$

- Do you see? 16 ! / 13! = $16 \times 15 \times 14$

(8) UTM

Example 2

- How many ways can first and second place be awarded to 10 people?

$$
P(10,2)=\frac{10!}{(10-2)!}=\frac{10!}{8!}=\frac{3,628,800}{40,320}=90
$$

- which is just the same as:

$$
10 \times 9=90
$$

Example 3

- 2- permutations of a, b, c are,
- $a b, a c, b a, b c, c a, c b$
$P(3,2)=\frac{3!}{(3-2)!}=\frac{3!}{1!}=3.2=6$

(3) UTM

Example 5

- How many dance pairs, (dance pairs means a pair (W,M), where W stands for a women and M for man), can be formed from a group of 6 women and 10 men?

$$
P(10,6)=\frac{10!}{(10-6)!}=\frac{10!}{4!}=10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5=151200
$$

- r-permutations of a set of n distinct elements if repetitions are allowed.

$$
P(n, r)=n r
$$

Example 4

- In how many ways can we select a chairperson, vice-chairperson, secretary, and treasurer from a group of 10 persons?
$P(10,4)=\frac{10!}{(10-4)!}=\frac{10!}{6!}=10 \cdot 9 \cdot 8 \cdot 7=5040$

(3) UTM

Example 6

- In how many ways can six boys and five girls stand in a line so that no two girls are next to each other?
- G B $_{1} G B_{2} G B_{3} G B_{4} G B_{5} G B_{6} G$
$P(7,5)=\frac{7!}{(7-5)!}=\frac{7!}{2!}=2520 \quad P(6,6)=6!=720$

$$
P(7,5) \cdot P(6,6)=1814400
$$

() UTM

- In other words:
- There are \boldsymbol{n} possibilities for the first choice,
- THEN there are \boldsymbol{n} possibilities for the second choice,
- and so on, multiplying each time.
- Which is easier to write down using an exponent of r :

$$
n \times n \times \ldots(r \text { times })=n^{r}
$$

$$
P(n)=\frac{n!}{\left(n_{1}!n_{2}!\ldots n_{k}!\right)}
$$

Exercise 3

1. How many words, with or without meaning can be made from the letters of the word MONDAY, assuming that no letter is repeated, if
i) 4 letters are used at a time,
ii) all letters are used at a time
iii) All letters are used but first letter is vowel
2. One hundred twelve people bought raffle tickets to enter a random drawing for three prizes. How many ways can three names be drawn for first prize, second prize, and third prize?
3. In how many ways can the letter of the word 'JUDGE' be arranged such that the vowels always come together?

(0) UTM

- There are also two types of combinations (remember the order does not matter now):
- Repetition is Allowed: such as coins in your pocket $(5,5,5,10,10)$
- No Repetition: such as combination of subjects to enroll (Maths., English, Music)

© UTM

Example 1

- Go back to our pool ball example, let us say that you just want to know which 3 pool balls were chosen, not the order.
- We already know that 3 out of 16 gave us 3,360 permutations.
- But many of those will be the same to us now, because we don't care what order!

- In fact there is an easy way to work out how many ways "1 23 " could be placed in order, and we have already talked about it.
- The answer is:

$$
3!=3 \times 2 \times 1=6
$$

(3) UTM

- So, our pool ball example (now without order)

$$
\text { is: } \frac{16!}{3!(16-3)!}=\frac{16!}{3!\times 13!}=\frac{20,922,789,888,000}{6 \times 6,227,020,800}=560
$$

- Or you could do it this way:

$$
\frac{16 \times 15 \times 14}{3 \times 2 \times 1}=\frac{3360}{6}=560
$$

Example 3

- In how many ways can we select a committee of 2 women and 3 men from a group of 5 distinct women and 6 distinct men?

$$
C(5,2)=\frac{5!}{2!3!}=10 \quad C(6,3)=\frac{6!}{3!3!}=20
$$

$10.20=200$

(ㅈ)UTM

- So, all we need to do is adjust our permutations formula to reduce it by how many ways the objects could be in order (because we aren't interested in the order any more):

$$
\frac{n!}{(n-r)!} \times \frac{1}{r!}=\frac{n!}{r!(n-r)!}
$$

(C) UTM

Example 2

- In how many ways can we select a committee of three from a group of 10 distinct persons?

$$
C(10,3)=\frac{10!}{3!(10-3)!}=\frac{10!}{3!7!}=120
$$

© UTM

Example 4

- How many 8 -bit strings contain exactly four 1's?

$$
C(8,4)=\frac{8!}{4!4!}=70
$$

© C UTM

Example 5

- A committee of six is to be made from 4 students and 8 lecturers. In how many ways can this be done:
- If the committee contains exactly 3 students?
- If the committee contains at least 3 students?

© UTM

- If the committee contains at least 3 students?
- We have to consider 2 cases
- Case 1:3 students and 3 lecturers
- Case 2: 4 students and 2 lecturers

© UTM

Example 5 - Solution

- If the committee contains exactly 3 students?
- Select 3 students
$C(4,3)=\frac{4!}{3!1!}=4$
- Select 3 lecturers
$C(8,3)=\frac{8!}{3!5!}=56$
- $4.56=224$

(C) UTM

- Case 1:3 students and 3 lecturers
- 224 ways
- Case 2: 4 students and 2 lecturers

$$
C(4,4)=1 \quad C(8,2)=\frac{8!}{2!6!}=28
$$

- $1.28=28$
- Case $1+$ case $2=224+28=252$

More exercises

1. Ahmad bought a machine to make fresh juice. He has five different fruits: strawberry, oranges, apples, pineapples and lemons. If he only use two fruits, how many different juice drinks can Ahmad make?
2. There are 25 people who work in an office together. Five of these people are selected to attend five different conferences. The first person selected will go to a conference in Hawaii, the second will go to New York, the third will go to San Diego, the fourth will go to Atlanta and the fifth will go to Nashville. How many such selection are possible
3. In a group of 6 boys and 4 girls, four children are to be selected. In how many different ways can they be selected such that at least one boy should be there?

The number of r-combinations of n objects with repetitions allowed is,

$$
C(n+r-1, r)=\frac{(n+r-1)!}{r!(n-1)!}
$$

$=\{$ where \boldsymbol{n} is the number of things/objects to choose from, and you choose r of them (repetition allowed, order doesn't matter) \}

© UTM

- Let's use letters for the flavors:

$$
\{b, c, l, s, v\}
$$

- Example selections would be
- $\{c, c, c\}$ (3 scoops of chocolate)
- $\{\mathrm{b}, \mathrm{l}, \mathrm{v}\}$ (one each of banana, lemon and vanilla)
- $\{b, v, v\}$ (one of banana, two of vanilla)
- (And just to be clear: There are $\boldsymbol{n}=\mathbf{5}$ things to choose from, and you choose $r=\mathbf{3}$ of them. Order does not matter, and you can repeat!)

(3)UTM

Example 2

A bakery makes 4 different varieties of donuts. Khairin wants to buy 6 donuts. How many different ways can he do it?
$C(4+6-1,6)=\frac{(4+6-1)!}{6!(4-1)!}=\frac{9!}{6!3!}=84$

Example 3

There is a box containing identical blue, green, pink, yellow, red and dark blue balls. In how many ways we can select 4 balls?

Solution:
$C(6+4-1,4)=\frac{(6+4-1)!}{4!(6-1)!}=\frac{9!}{4!5!}=126$

EXERCISE

There is a shipment of 50 microprocessors of which four are defective.

- In how many ways can we select a set of 4 microprocessors?
- In how many ways can we select a set of 4 microprocessor containing at least 1 defective microprocessor?

