(3) UTM

CHAPTER 2

[Part 2]
FUNCTIONS

FUNCTION

- Let \mathbf{X} and \mathbf{Y} are nonempty sets.
- A function (f) from \mathbf{X} to \mathbf{Y} is a relation from \mathbf{X} to
\mathbf{Y} having a properties:
- The domain of f is \mathbf{X}
- If $(x, y),\left(x, y^{\prime}\right) \in f$, then $y=y^{\prime}$

Relations vs Functions

- Not all relations are functions
- But consider the following function:

- All functions are relations!

Relations vs Functions

When to use which?

- A function is used when you need to obtain a SINGLE result for any element in the domain
- Example: sin, cos, tan
- A relation is when there are multiple mappings between the domain and the co-domain
- Example: students enrolled in multiple courses

(3) UTM

Domain, Co-domain, Range

- A function from \mathbf{X} to \mathbf{Y} is denoted, $f: \mathbf{X} \rightarrow \mathbf{Y}$
- The domain of f is the set \mathbf{X}.
- The set \mathbf{Y} is called the co-domain or target of f.
- The set $\{y \mid(x, y) \in f\}$ is called the range.

Example

Given the relation, $f=\{(1, a),(2, b),(3, a)\}$ from $\mathbf{X}=\{1,2,3\}$ to $\mathbf{Y}=\{a, b, c\}$ is a function from \mathbf{X} to \mathbf{Y}. State the domain and range.

Solution:
\checkmark The domain of f is \mathbf{X}
\checkmark The range of f is $\{\mathrm{a}, \mathrm{b}\}$

- $f=\{(1, a),(2, b),(3, a)\}$

Example

- The relation, $R=\{(1, a),(2, a),(3, b)\}$
from $X=\{1,2,3,4\}$ to $Y=\{a, b, c\}$ is NOT a function from X to Y.
- The domain of $R,\{1,2,3\}$ is not equal to x.
$R=\{(1, a),(2, a),(3, b)\}$

There is no arrow from 4

a The relation, $R=\{(1, a),(2, b),(3, c),(1, b)\}$ from $X=\{1,2,3\}$ to $Y=\{a, b, c\}$ is NOT a funtion from X to Y

- $(1, a)$ and $(1, b)$ in R but $a \neq b$.

Notation of function: $f(x)$

- For the function, $f=\{(1, a),(2, b),(3, a)\}$
- We may write:

$$
f(1)=a, f(2)=b, f(3)=a
$$

- Notation $f(x)$ is used to define a function.

(3) UTM
 Example

- Defined: $f(x)=x^{2}$
- $f(2)=4, f(-3.5)=12.25, f(0)=0$
- $f=\left\{\left(x, x^{2}\right) \mid x\right.$ is a real number $\}$

One-to-One Function

- A function f from X to Y, is said one-toone (or injective) if for each $y \in Y$, there is at most one $x \in X$, with $f(x)=y$.
- For all x_{1}, x_{2}, if $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $x_{1}=x_{2}$.

$$
\forall x_{1} \forall x_{2}\left(\left(f\left(x_{1}\right)=f\left(x_{2}\right)\right) \rightarrow\left(x_{1}=x_{2}\right)\right)
$$

Example

- The function, $f=\{(1, b),(3, a),(2, c)\}$ from $\mathbf{X}=\{$ $1,2,3$ to $\mathbf{Y}=\{a, b, c, d\}$ is one-to-one.

Each element in Y has at most one arrow pointing to it

Example (cont.)

- The function, $f=\{(1, a),(2, b),(3, a)\}$ from $\mathbf{X}=\{$ $1,2,3$ to $\mathbf{Y}=\{a, b, c\}$ is NOT one-to-one.
- $f(1)=\mathrm{a}=f(3)$

Example

Show that the function,

$$
f(n)=2 n+1
$$

on the set of positive integers is one-toone.

- For all positive integer, n_{1} and n_{2} if $f\left(n_{1}\right)$ $=f\left(n_{2}\right)$, then $n_{1}=n_{2}$.
- Let, $f\left(n_{1}\right)=f\left(n_{2}\right), \quad f(n)=2 n+1$ then $2 n_{1}+1=2 n_{2}+1 \quad(-1)$
$2 n_{1}=2 n_{2} \quad(\div 2)$
$n_{1}=n_{2}$
- This shows that f is one-to-one.

Example

- Show that the function,

$$
f(n)=2^{n}-n^{2}
$$

from the set of positive integers to the set of integers is NOT one-to-one.

Solution

- Need to find 2 positive integers, n_{1} and n_{2}

$$
n_{1} \neq n_{2} \text { with } \mathrm{f}\left(n_{1}\right)=\mathrm{f}\left(n_{2}\right) \text {. }
$$

- trial and error,

$$
f(2)=f(4)
$$

- f is not one-to-one.

Onto Function

- If f is a function from \mathbf{X} to \mathbf{Y} and the range of f is \mathbf{Y}, f is said to be onto \mathbf{Y} (or an onto function or a surjective function)
- For every $y \in \mathbf{Y}$, there exists at least one $x \in \mathbf{X}$ such that $f(x)=y$

$$
\forall y \in \mathbf{Y} \exists x \in \mathbf{X}(f(x)=y)
$$

Example

- The function, $f=\{(1, a),(2, c),(3, b)\}$ from $\mathbf{X}=\{$ $1,2,3$ to $\mathbf{Y}=\{a, b, c\}$ is one-to-one and onto Y.

[^0]
Example

- The function, $f=\{(1, \mathrm{~b}),(3, \mathrm{a}),(2, \mathrm{c})\}$ is not onto $\mathbf{Y}=\{a, b, c, d\}$

$$
\bullet f=\{(1, b),(3, a),(2, c)\}
$$

not onto
no arrow
pointing to d

Bijection Function

- A function, f is called one-to-one correspondence (or bijective/bijection) if f is both one-to-one and onto.
- Example:

$$
\bullet f=\{(1, \alpha),(2, \theta),(3, \beta)\}
$$

(3) UTM

Exercise

Determine which of the relations f are functions from the set \mathbf{X} to the set \mathbf{Y}. In case any of these relations are functions, determine if they are one-to-one, onto \mathbf{Y}, and/or bijection.
a) $\mathbf{X}=\{-2,-1,0,1,2\}, \mathbf{Y}=\{-3,4,5\}$ and $f=\{(-2,-3),(-1,-3),(0,4),(1,5),(2,-3)\}$
b) $\mathbf{X}=\{-2,-1,0,1,2\}, \mathbf{Y}=\{-3,4,5\}$ and $f=\{(-2,-3),(1,4),(2,5)\}$
c) $\mathbf{X}=\mathbf{Y}=\{-3,-1,0,2\}$ and $f=\{(-3,-1),(-3,0),(-1,2),(0,2),(2,-1)\}$

(C)UTM

Inverse Function

- Let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a function.
- The inverse relation $f^{-1} \subseteq \mathbf{Y} \times \mathbf{X}$ is a function from \mathbf{Y} to \mathbf{X}, if and only if f is both one-to-one and onto \mathbf{Y}.

$$
f=\{(1, \mathrm{a}),(2, \mathrm{c}),(3, \mathrm{~b})\}
$$

$$
f^{-1}=\{(a, 1),(c, 2),(b, 3)\}
$$

Example

- The function, $f(x)=9 x+5$ for all $x \in R(R$ is the set of real numbers).
- This function is both one-to-one and onto.
- Hence, f^{-1} exists.
- Prove:

$$
\begin{aligned}
& \text { Let }(y, x) \in f^{-1}, f^{-1}(y)=x \\
& \begin{array}{ll}
(x, y) \in f, & y=9 x+5 \\
& x=(y-5) / 9 \\
& f^{-1}(y)=(y-5) / 9
\end{array}
\end{aligned}
$$

Exercise

- Find each inverse function.

$$
\text { a) } f(x)=4 x+2, x \in R
$$

$$
\text { b) } f(x)=3+(1 / x), x \in R
$$

- Suppose that g is a function from \mathbf{X} to \mathbf{Y} and f is a function from \mathbf{Y} to \mathbf{Z}.
- The composition of f with g, fog
is a function

$$
(f o g)(x)=f(g(x))
$$

from \mathbf{X} to \mathbf{Z}.

(3) UTM

Example

- Given, $g=\{(1, \mathrm{a}),(2, \mathrm{a}),(3, \mathrm{c})\}$
a function from $\mathbf{X}=\{1,2,3\}$ to $\mathbf{Y}=\{a, b, c\}$ and,

$$
f=\{(\mathrm{a}, \mathrm{y}),(\mathrm{b}, \mathrm{x}),(\mathrm{c}, \mathrm{z})\}
$$

a function from \mathbf{Y} to $\mathbf{Z}=\{x, y, z\}$.

- The composition function from \mathbf{X} to \mathbf{Z} is the function

$$
f \circ g=\{(1, y),(2, y),(3, z)\}
$$

$$
\begin{aligned}
& f(x)=\log _{3} x \text { and } g(x)=x^{4} \\
& >f(g(x))=\log _{3}\left(x^{4}\right) \\
& >g(f(x))=\left(\log _{3} x\right)^{4} \\
& >\text { Note: } f o g \neq g \text { of }
\end{aligned}
$$

Example

$$
\begin{gathered}
f(x)=\frac{1}{5} x \quad g(x)=x^{2}+1 \\
(g \circ f)(x)=g(f(x))=g\left(\frac{x}{5}\right) \\
=\left(\frac{x}{5}\right)^{2}+1=\frac{x^{2}}{25}+1
\end{gathered}
$$

Example

- Composition sometimes allows us to decompose complicated functions into simpler functions.
- example $f(x)=\sqrt{\sin 2 x}$

$$
\begin{gathered}
g(x)=\sqrt{x} \quad h(x)=\sin x \quad w(x)=2 x \\
f(x)=g(h(w(x)))
\end{gathered}
$$

Exercise

- Let f and g be functions from the positive integers to the positive integers defined by the equations, $f(n)=n^{2}, g(n)=2^{n}$
- Find the compositions
a) f of
b) $g o g$
c) $f o g$
d) $g o f$

Recursive Algorithms

- A recursive procedure is a procedure that invokes itself.
- A recursive algorithm is an algorithm that contains a recursive procedure.
- Recursion is a powerful, elegant and natural way to solve a large class of problems.

Example

Factorial problem

- If $n \geq 1$,
$n!=n(n-1) \Rightarrow 2 \times 1$
and $0!=1$
- Notice that, if $n \geq 2, n$ factorial can be
written as,

$$
\begin{aligned}
n! & =n(n-1)(n-2) \Rightarrow 2 \times 1 \times 0 \\
& =n(n-1)!
\end{aligned}
$$

- Input: n, integer ≥ 0
- Output: n !
- Factorial (n) \{

$$
\text { if }(n=0)
$$ return 1

 return \(n *\) factorial \((n-1)\)
 \}

Example

- Fibonacci sequence, f_{n}

$$
\begin{aligned}
& f_{1}=1 \\
& f_{2}=1 \\
& f_{n}=f_{n-1}+f_{n-2^{\prime}}, \text { for } n \geq 3 \\
& 1,1,2,3,5,8,13, \ldots
\end{aligned}
$$

Recursive algorithm for Fibonacci Sequence :

- Input:n
- Output: $f(n)$
- $f(n)\{$ if ($n=1$ or $n=2$) return 1

$$
\text { return } f(n-1)+f(n-2)
$$

\}

[^0]: innovative • entrepreneurial •global

