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CHAPTER 1

Quantifiers & Proof Technique

SCSI1013: Discrete Structures

2014/2015-Sem.1

• Most of the statements in mathematics and 
computer science are not described properly 
by the propositions. 

• Since most of the statements in mathematics 
and computer science use variables, the 
system of logic must be extended to include 
statements with the variables.

QUANTIFIERS

• Let P(x) is a statement with variable x and A is 
a set. 

• P a propositional function or also known as 
predicate if for each x in A, P(x) is a 
proposition. 

• Set A is the domain of discourse of P.
• Domain of discourse -> the particular domain 

of the variable in a propositional function.

QUANTIFIERS (cont.)

• A predicate is a statement that contains 
variables.

• Example:
P (x) : x > 3
Q (x,y) : x = y + 3
R (x,y,z) : x + y = z

QUANTIFIERS (cont.)

• x2 + 4x is an odd integer 
(domain of discourse is set of positive numbers).

• x2 – x – 6 = 0 
(domain of discourse is set of real numbers).

• UTM is rated as Research University in Malaysia
(domain of discourse is set of research university 
in Malaysia).

Example
• A predicate becomes a proposition if the 

variable(s) contained is(are)
 Assigned specific value(s)
 Quantified

Example
• P(x) : x > 3. 

What are the truth values of P(4)- (true) and   
P(2)(false)?
• Q(x,y) : x = y + 3. 

What are the truth values of Q(1,2) and Q(3,0)?

QUANTIFIERS (cont.)
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Propositional functions 2

• Let P(x) = “x is a multiple of 5”
– For what values of x is P(x) true?

• Let P(x) = x+1 > x
– For what values of x is P(x) true?

• Let P(x) = x + 3
– For what values of x is P(x) true?

• Two types of quantifiers:
 Universal
 Existential

QUANTIFIERS (cont.)

• Let A be a propositional function with domain 
of discourse B. The statement

for every x, A(x)
is universally quantified statement

• Symbol ∀ called a universal quantifier is used 
“for every”. 

• Can be read as “for all”, “for any”. 

QUANTIFIERS (cont.)

10

Universal quantifiers 1

• Represented by an upside-down A: 
– It means “for all”
– Let P(x) = x+1 > x

• We can state the following:
– x P(x)
– English translation: “for all values of x, P(x) is true”
– English translation: “for all values of x, x+1>x is 

true”

• The statement can be written as

∀x A(x)
• Above statement is true if A(x) is true for every x in B (false if 

A(x) is false for at least one x in B ). 
OR   In order to prove that a universal quantification is true, 

it  must be shown for ALL cases
In order to prove that a universal quantification is false, it          

must be shown to be false for only ONE case
• A value x in the domain of discourse that makes the 

statement A(x) false is called a counterexample to the 
statement.

QUANTIFIERS (cont.)

• Let the universally quantified statement is
∀x (x2 ≥ 0)

• Domain of discourse is the set of real numbers. 

• This statement is true because for every real 
number x, it is true that the square of x is 
positive or zero.

Example
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• Let the universally quantified statement is
∀x (x2 ≤ 9)

• Domain of discourse is a set B = {1, 2, 3, 4}
• When x = 4, the statement produce false 

value. 
• Thus, the above statement is false and the 

counterexample is 4.

Example
• Easy to prove a universally quantified statement is 

true or false if the domain of discourse is not too 
large. 

• What happen if the domain of discourse contains a 
large number of elements? 

• For example, a set of integer from 1 to 100, the set of 
positive integers, the set of real numbers or a set of 
students in Faculty of Computing. It will be hard to 
show that every element in the set is true.

Use existential quantifier!!Use existential quantifier!!

QUANTIFIERS (cont.)

• Let A be a propositional function with domain 
of discourse B. The statement

There exist x, A(x)
is existentially quantified statement

• Symbol ∃ called an existential quantifier is 
used “there exist”. 

• Can be read as “for some”, “for at least one”. 

QUANTIFIERS (cont.)

• The statement can be written as

∃x A(x)
• Above statement is true if A(x) is true for at 

least one x in B (false if every x in B makes the 
statement A(x) false).

• Just find one x that makes A(x) true!

QUANTIFIERS (cont.)

• Let the existentially quantified statement is
∃x

• Domain of discourse is the set of real numbers. 
• Statement is true because it is possible to find 

at least one real number x to make the 
proposition true. 

Example
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• For example, if x = 2, we obtain the true 
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• Distributing a negation operator across a 
quantifier changes a universal to an existential 
and vice versa.

¬ (x P(x)) ;  x ¬ P(x) 

¬ (x P(x)) ;  x ¬ P(x)

Negation of Quantifiers
• Let P(x) = x is taking Discrete Structure course 

with the domain of discourse is the set of all 
students.

 ∀x P(x): All students are taking Discrete Structure 
course.

 ∃x P(x): There is some students who are taking 
Discrete Structure course.

Example

¬∃x P(x):  None of the students are taking Discrete 
Structure course.

∀x ¬ P(x):  All students are not taking Discrete 
Structure course.

¬ (x P(x)) ;  x ¬ P(x)

¬∀x P(x):  Not all students are taking Discrete 
Structure course.

∃x ¬P(x):  There is some students who are not taking 
Discrete Structure course

¬ (x P(x)) ;  x ¬ P(x) 

23

Translating from English

• Consider “For every student in this class, that 
student has studied calculus”

• Rephrased: “For every student x in this class, x 
has studied calculus”
– Let C(x) be “x has studied calculus”
– Let S(x) be “x is a student”

• x C(x)
– True if the universe of discourse is all students in 

this class
24

Translating from English 2

• What about if the unvierse of discourse is all 
students (or all people?)
– x (S(x)C(x))

• This is wrong!  Why? (because this statement says that 
all people are students in this and have studied 
calculus)

– x (S(x)→C(x))
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Translating from English 3

• Consider:
– “Some students have visited Mexico”
– “Every student in this class has visited Canada or 

Mexico”

• Let:
– S(x) be “x is a student in this class”
– M(x) be “x has visited Mexico”
– C(x) be “x has visited Canada”

26

Translating from English 4

• Consider: “Some students have visited Mexico”
– Rephrasing: “There exists a student who has visited 

Mexico”

x M(x)
– True if the universe of discourse is all students

• What about if the universe of discourse is all people?
x (S(x)  M(x))

– x (S(x) → M(x))
• This is wrong!  Why? 
suppose someone not in the class = F->T or  F->F, both make the 

statement  true

27

Translating from English 5

• Consider: “Every student in this class has 
visited Canada or Mexico”

• x (M(x)C(x)
– When the universe of discourse is all students

• x (S(x)→(M(x)C(x))
– When the universe of discourse is all people

• Mathematical systems consists:
- Axioms: assumed to be true.
- Definitions: used to create new concepts.
- Undefined terms: some terms that are not  

explicitly defined.
- Theorem

Proof Techniques

• Theorem
– Statement that can be shown to be true 

(under certain conditions)
–Typically stated in one of three ways:

• As Facts
• As Implications 
• As Bi-implications

Proof Techniques
Direct Proof  (Direct Method)
Proof of those theorems that can be expressed in the 
form ∀x (P(x) → Q(x)), D is the domain of discourse.
Select a particular, but arbitrarily chosen, member a
of the domain D.
Show that the statement P(a) → Q(a) is true. (Assume 
that P(a) is true).
Show that Q(a) is true.
By the rule of Universal Generalization (UG), 
∀x (P(x) → Q(x)) is true.

Proof Techniques (cont.)
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For all integer x, if x is odd, then x2 is odd
Or P(x) = is an odd integer

Q(x) = x2 is an odd integer

the domain of discourse is set Z of all  integer.
Can verify the theorem  for certain value of x. 

x=3, x2 =9 ; odd

Example

))()(( xQxPx 

Example

• Or show that the square of an odd number is 
an odd number

• Rephrased: if n is odd, the n2 is odd

• a is an odd integer
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 for some integer n

where m= 2n2 + 2n is an integer

is an odd integer 

Example (cont.)

• Indirect Proof 

 The implication p → q is equivalent to the 
implication (¬q → ¬p) (contrapositive)

 Therefore, in order to show that p → q  is true, 
one can also show that the implication (¬q → ¬p) 
is true.

 To show that (¬ q  → ¬ p) is true, assume that the 
negation of q is true and prove that the negation 
of p is true.

Proof Techniques (cont.)

P(n) : n2+3 is an odd number
Q(n) : n is even number

• ¬ Q(n) is true , n is not even (n is odd), so n=2k+1

Example

))()(( nQnPn 
)()()()( nPnQnQnP 
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t is integer

n2+3 is an even integer, thus ¬ P(n) is true

Example (cont.)
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Which to use

• When do you use a direct proof versus an 
indirect proof?

• If it’s not clear from the problem, try direct 
first, then indirect second
– If indirect fails, try the other proofs

38

Example of which to use
Prove that if n is an integer and n3+5 is odd, then n is even

• Via direct proof
– n3+5 = 2k+1 for some integer k (definition of odd numbers)
– n3 = 2k+6
–
– Umm…

• So direct proof didn’t work out.  Next up: indirect 
proof

3 62  kn

39

Example of which to use

– Prove that if n is an integer and n3+5 is odd, then n is even

• Via indirect proof
– Contrapositive: If n is odd, then n3+5 is even
– Assume n is odd, and show that n3+5 is even
– n=2k+1 for some integer k (definition of odd numbers)
– n3+5 = (2k+1)3+5 = 8k3+12k2+6k+6 = 2(4k3+6k2+3k+3)
– As 2(4k3+6k2+3k+3) is 2 times an integer, it is even

Proof by Contradiction 

Assume that the hypothesis is true and that the 
conclusion is false and then, arrive at a contradiction.

Proposition if P then Q
Proof. Suppose P and ~Q

Since we have a contradiction, it must be that Q is true

Proof Techniques (cont.)

Prove that there are infinitely many prime numbers.
Proof:
Assume there are not infinitely many prime numbers, 
therefore they are can be listed,  i.e. p1,p2,…,pn

Consider the number q = p1 x p2 x…x pn + 1. 
 q is either prime or not divisible, but not listed above. 
Therefore, q is a prime. However, it was not listed.
Contradiction! Therefore, there are infinitely many 
primes numbers.

Example Example

• For all real numbers x and y, if x+y 2, then either      
x  1 or y  1.

Proof
• Suppose that the conclusion is false. Then 

x < 1 and y <1
Add these inequalities,   x+y < 1+1 = 2  (x+y <2)

• Contradiction
• Thus we conclude that the statement is true.
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Example
Suppose        . If      is even, then a is even
Proof
• Contradiction: Suppose     is even and a is not even. 
• Then     is even, and a is odd
• So , then
• Thus      is even and is not even, a contradiction
• The original supposition that is    even and a is odd 

could not be true 
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