





### **OUTM**

### Example

- i) The temperature on the surface of the planet Venus is 800 F.
- ii) The sun will come out tomorrow.

#### Propositions? Why?

- i) Is a statement since it is either true or false, but not both.
- ii) However, we do not know at this time to determine whether it is true or false.



# CONJUNCTIONS

#### **Conjunctions** are:

- Compound propositions formed in English with the word "and",
- Formed in logic with the caret symbol ("  $\land$  "), and
- True only when both participating propositions are true.

| <b>TRUTH TABLE:</b> This tables aid in the evaluation of compound propositions. |   |   |                  |  |  |  |  |  |
|---------------------------------------------------------------------------------|---|---|------------------|--|--|--|--|--|
|                                                                                 | p | q | <mark>₽∧q</mark> |  |  |  |  |  |
|                                                                                 | Т | Т | Т                |  |  |  |  |  |
|                                                                                 | Т | F | F                |  |  |  |  |  |
|                                                                                 | F | Т | F                |  |  |  |  |  |
|                                                                                 | F | F | F                |  |  |  |  |  |
|                                                                                 |   |   |                  |  |  |  |  |  |







## **UTM**

### DISJUNCTION

- Compound propositions formed in English with the word "or",
- Formed in logic with the caret symbol (" V "), and,
- True when one or both participating propositions are true.





### DISJUNCTION (cont.)

Let *p* and *q* be propositions. The **disjunction** of *p* and *q*, written *p* V *q* is the statement formed by putting statements *p* and *q* together using the word "or". The symbol V is called "or"

| The truth table for $p \lor q$ : |                     |    |          |            |  |  |  |  |
|----------------------------------|---------------------|----|----------|------------|--|--|--|--|
|                                  |                     |    |          |            |  |  |  |  |
|                                  | <u> </u>            | 9  | <u> </u> |            |  |  |  |  |
|                                  | Т                   | Т  | Т        |            |  |  |  |  |
|                                  | Т                   | F  | Т        |            |  |  |  |  |
|                                  | F                   | Т  | Т        |            |  |  |  |  |
|                                  | F                   | F  | F        |            |  |  |  |  |
|                                  |                     |    |          |            |  |  |  |  |
|                                  |                     |    |          |            |  |  |  |  |
| innovative • entre               | preneurial • global | 13 |          | www.utm.my |  |  |  |  |



























| The                     | truth table o  | f $p \leftrightarrow a$ : |                       |            |  |  |  |
|-------------------------|----------------|---------------------------|-----------------------|------------|--|--|--|
|                         |                | - <u>-</u>                |                       |            |  |  |  |
|                         | n              | a                         | $n \leftrightarrow a$ |            |  |  |  |
|                         | Ρ              | 9                         | <i>P</i> \ 7 <b>9</b> |            |  |  |  |
|                         | Т              | Т                         | Т                     |            |  |  |  |
|                         | Т              | F                         | F                     |            |  |  |  |
|                         | F              | Т                         | F                     |            |  |  |  |
|                         | F              | F                         | Т                     |            |  |  |  |
|                         |                |                           |                       |            |  |  |  |
|                         |                |                           |                       |            |  |  |  |
| innovative • entreprene | urial • global | 27                        |                       | www.utm.my |  |  |  |
|                         |                |                           |                       |            |  |  |  |



### LOGICAL EQUIVALENCE

• The compound propositions **Q** and **R** are made up of the propositions  $p_1, ..., p_n$ .

• **Q** and **R** are logically equivalent and write,  $Q \equiv R$ 

**OUTM** 

provided that given any truth values of  $p_1, ..., p_n$ , either **Q** and **R** are **both true** or **Q** and **R** are **both false**.

| 6        | $\mathbf{Q} = p \rightarrow q$ Example |                  |                             |                           |            |  |  |
|----------|----------------------------------------|------------------|-----------------------------|---------------------------|------------|--|--|
|          | $R = \neg q \rightarrow$               | - p              |                             |                           |            |  |  |
|          | Show that                              | $at, Q \equiv R$ | chows the                   | a + O = P                 |            |  |  |
|          | n n                                    |                  | shows the $n \rightarrow a$ | at, $Q = R$               |            |  |  |
|          | μ                                      | 9                | $p \rightarrow q$           | $\eta \rightarrow \eta p$ |            |  |  |
|          | Т                                      | Т                | Т                           | Т                         |            |  |  |
|          | Т                                      | F                | F                           | F                         |            |  |  |
|          | F                                      | Т                | Т                           | Т                         |            |  |  |
|          | F                                      | F                | Т                           | Т                         |            |  |  |
| innovati | ive • entrepreneurial • glol           | bal              | 30                          |                           | www.utm.my |  |  |

| <b>O</b> U1                                                  | ГМ                                                                            |   | Exam                        | ole                   |                    |  |  |  |
|--------------------------------------------------------------|-------------------------------------------------------------------------------|---|-----------------------------|-----------------------|--------------------|--|--|--|
| Show that,<br>$\neg (p \rightarrow q) \equiv p \land \neg q$ |                                                                               |   |                             |                       |                    |  |  |  |
| T<br>-                                                       | The truth table shows that,<br>$\neg (p \rightarrow q) \equiv p \land \neg q$ |   |                             |                       |                    |  |  |  |
|                                                              | p                                                                             | q | ר ( <i>p</i> →<br><i>q)</i> | <i>p</i> ∧ ¬ <i>q</i> |                    |  |  |  |
|                                                              | Т                                                                             | Т | F                           | F                     |                    |  |  |  |
|                                                              | Т                                                                             | F | Т                           | Т                     |                    |  |  |  |
|                                                              | F                                                                             | Т | F                           | F                     |                    |  |  |  |
| incrutive e er                                               | F                                                                             | F | F                           | F                     | MONIAL LITERS POLY |  |  |  |

| <b>OUTM</b><br>PRECEDENCE OF LOGICAL CONNECTIVES |                   |                                  |            |            |  |  |
|--------------------------------------------------|-------------------|----------------------------------|------------|------------|--|--|
|                                                  | Precedenc         | e of logical c<br>is as follows: | onnectives |            |  |  |
| not                                              | -                 | <b>^</b>                         | Highest    |            |  |  |
| and                                              | $\wedge$          |                                  |            |            |  |  |
| or                                               | $\vee$            |                                  |            |            |  |  |
| lfthen                                           | $\rightarrow$     |                                  |            |            |  |  |
| If and only if                                   | $\leftrightarrow$ | I                                | Lowest     |            |  |  |
|                                                  |                   |                                  |            |            |  |  |
| innovative • entrepreneu                         | rial • global     | 32                               |            | www.utm.my |  |  |

|           | Construct<br>$\mathbf{A} = \neg (p \setminus Solution)$ | ct the<br>/ q) →<br>n: | truth table<br>→ (q ∧ p) | Example<br>e for, | ,     |   |  |  |
|-----------|---------------------------------------------------------|------------------------|--------------------------|-------------------|-------|---|--|--|
|           | p                                                       | q                      | (p∨q)                    | ¬(p∨q)            | (q∧p) | Α |  |  |
|           | Т                                                       | Т                      | Т                        | F                 | Т     | Т |  |  |
|           | Т                                                       | F                      | Т                        | F                 | F     | Т |  |  |
|           | F                                                       | Т                      | Т                        | F                 | F     | Т |  |  |
|           | F                                                       | F                      | F                        | Т                 | F     | F |  |  |
| innovativ | innovative • entrepreneurial • global 33 www.utm.my     |                        |                          |                   |       |   |  |  |







| Logic ar                                                                               | nd Sets                                    |
|----------------------------------------------------------------------------------------|--------------------------------------------|
| are closel                                                                             | v related                                  |
| Tautology                                                                              | Set Operation Identity                     |
| $p \lor q \leftrightarrow q \lor p$                                                    | $A \cup B = B \cup A$                      |
| $p \land q \leftrightarrow q \land p$                                                  | $A \cap B = B \cap A$                      |
| $p \lor (q \lor r) \leftrightarrow (p \lor q) \lor r$                                  | $A \cup (B \cup C) = (A \cup B) \cup C$    |
| $p \land (q \land r) \leftrightarrow (p \land q) \land r$                              | A∩(B∩C)=(A∩B)∩C                            |
| $p \lor (q \land r) \leftrightarrow (p \lor q) \land (p \lor r)$                       | A∪(B∩C)=(A∪B)∩(A∪C                         |
| $p \land (q \lor r) \leftrightarrow (p \land q) \lor (p \land r)$                      | A∩(B∪C)=(A∩B)∪(A∩C                         |
| $p \land \neg q \leftrightarrow p \land \neg (p \land q)$                              | $A-B=A-(A\cap B)$                          |
| $p \land \neg (q \lor r) \leftrightarrow (p \land \neg q) \land (p \land \neg r)$      | $A - (B \cap C) = (A - B) \cup (A - C)$    |
| $p \land \neg (q \land r) \leftrightarrow (p \land \neg q) \lor (p \land \neg r)$      | A-(B∪C)=(A-B)∩(A-C)                        |
| $p \land (q \land \neg r) \leftrightarrow (p \land q) \land \neg (p \land \neg r)$     | $A \cap (B - C) = (A \cap B) - (A \cap C)$ |
| $p \lor (q \land \neg r) \leftrightarrow (p \lor q) \land \neg (r \land \neg p)$       | A∪(B-C)=(A∪B)-(C-A)                        |
| $p \land \neg \lor (q \land \neg r) \leftrightarrow (p \land \neg q) \lor (p \land r)$ | $A - (B - C) = (A - B) \cup (A \cap C)$    |
| The above identities serve as the b                                                    | asis for an "algebra of sets".             |









| <b>OUTM</b><br>Prove: Distributive Laws |              |      |   |                       |              |            |  |
|-----------------------------------------|--------------|------|---|-----------------------|--------------|------------|--|
|                                         |              |      |   |                       |              | -          |  |
|                                         | р            | q    | r | $p \vee (q \wedge r)$ | (pvq) ^ (pvr | )          |  |
|                                         | Т            | Т    | Т | T                     | T            |            |  |
|                                         | Т            | Т    | F | T                     | Т            |            |  |
|                                         | Т            | F    | Т | T                     | Т            |            |  |
|                                         | Т            | F    | F | T                     | Т            |            |  |
|                                         | F            | Т    | Т | Т                     | Т            |            |  |
|                                         | F            | Т    | F | F                     | F            |            |  |
|                                         | F            | F    | Т | F                     | F            |            |  |
|                                         | F            | F    | F | F                     | F            |            |  |
|                                         |              |      |   | 0 00                  | 5            |            |  |
|                                         |              |      |   |                       |              |            |  |
| innovative • entrepren                  | ieurial • gl | obal |   | 42                    |              | www.utm.my |  |

| GUTM                      |              |        |         |         |            |
|---------------------------|--------------|--------|---------|---------|------------|
| Prove:                    | Absc         | orptic | on Laws |         |            |
|                           |              |        |         |         |            |
|                           | р            | q      | p∧(p∨q) | p∨(p∧q) |            |
|                           | Т            | T      | т       | т       |            |
|                           | T            | F      | T       | T       |            |
|                           | F            | Т      | F       | F       |            |
|                           | F            | F      | F       | F       |            |
|                           |              |        |         |         |            |
|                           |              |        |         |         |            |
| innovative • entrepreneur | ial • global |        | 43      |         | www.utm.my |

| 6                 | <b>OUTM</b> Theorem for Logic (cont.)                                                                |       |       |                              |           |       |  |  |  |
|-------------------|------------------------------------------------------------------------------------------------------|-------|-------|------------------------------|-----------|-------|--|--|--|
| De Morgan's laws: |                                                                                                      |       |       |                              |           |       |  |  |  |
|                   | $\neg (p \land q) \equiv (\neg p) \lor (\neg q)$<br>$\neg (p \lor q) \equiv (\neg p) \land (\neg q)$ |       |       |                              |           |       |  |  |  |
|                   | The                                                                                                  | truth | table | for ¬( <i>p</i> ∨ <i>q</i> ) | ≡ (¬ p) ∧ | (- q) |  |  |  |
|                   |                                                                                                      | р     | q     | ¬(p∨q)                       | - p ^ - c | 7     |  |  |  |
|                   |                                                                                                      | T     | Т     | F                            | F         |       |  |  |  |
|                   |                                                                                                      | T     | F     | F                            | F         |       |  |  |  |
|                   |                                                                                                      | F     | Т     | F                            | F         |       |  |  |  |
|                   | F F T T                                                                                              |       |       |                              |           |       |  |  |  |
| inni              | innovative electroscenetical elobal da wave utco. cov                                                |       |       |                              |           |       |  |  |  |
|                   |                                                                                                      |       |       |                              |           |       |  |  |  |







