

Some of the reasons:

- Logic is the foundation for computer operation
- Logical conditions are common in programs: Example:
Selection: if (score <= max) \{ ... \}
Iteration: while (i<limit \& \& list[$[\mathrm{i}]!=s e n t i n e l)$...
- All manner of structures in computing have properties that need
to be proven (and proofs that need to be understood).
Examples: Trees, Graphs, Recursive Algorithms, . . .
- Programs can be proven correct.
- Computational linguistics must represent and reason about human language, and language represents thought (and thus also logic).

Why Are We Studying Logic?
 (3)UTM

(3)UTM

Example

i) Why do we study mathematics?
ii) Study logic.
iii) What is your name?
iv) Quiet, please.

The above sentences are not propositions. Why ?
(i) \& (iii) : is question, not a statement.
(ii) \& (iv) : is a command.

(ㅇ)UTM

Example

i) The temperature on the surface of the planet Venus is 800 F .
ii) The sun will come out tomorrow.

Propositions? Why?
i) Is a statement since it is either true or false, but not both.
ii) However, we do not know at this time to determine whether it is true or false.

() UTM

CONJUNCTIONS

Conjunctions are:

- Compound propositions formed in English with the word "and",
- Formed in logic with the caret symbol (" $\wedge "$ ", and
- True only when both participating propositions are true.

(0) UTM
Proposition:-
$p: 2$ divides 4
$q: 2$ divides 6

Symbol: Statement:-
$p \wedge q: 2$ divides 4 and 2 divides 6.
or,
$p \wedge q: 2$ divides both 4 and 6.

(C) UTM
Proposition:-
$p: 5$ is an integer
$q: 5$ is not an odd integer
Symbol: Statement:-
$p \wedge q: 5$ is an integer and 5 is not an odd integer.
or,
$p \wedge q: 5$ is an integer but 5 is not an odd integer.

DISJUNCTION ${ }_{\text {toont }}$

The truth table for $p \vee q$:

p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

i) $\boldsymbol{p}: \mathbf{2}$ is an integer ; $\boldsymbol{q}: 3$ is greater than 5 $\boldsymbol{p} \vee \boldsymbol{q} \Rightarrow 2$ is an integer or 3 is greater than 5
ii) $\boldsymbol{p}: 1+1=3 ; \boldsymbol{q}:$ A decade is 10 years

$$
\boldsymbol{p} \vee \boldsymbol{q} \Rightarrow 1+1=3 \text { or a decade is } 10 \text { years }
$$

iii) $\boldsymbol{p}: 3$ is an even integer; $\boldsymbol{q}: 3$ is an odd integer $\mathbf{p} \vee \mathbf{q} \rightarrow 3$ is an even integer or 3 is an odd integer ; or

3 is an even integer or an odd integer

Exercise (2)

In each of the following, form the conjunction and the disjunction of \boldsymbol{p} and \boldsymbol{q} by writing the symbol and the statements.
i) p : I will drive my car q : I will be late
ii) $p: \mathrm{NUM}>10$
$q: N U M \leq 15$

Example

$\boldsymbol{p}: \mathrm{x} / 2$ is an integer.
$\boldsymbol{q}: \mathrm{x}$ is an even integer.

$$
\mathrm{p} \rightarrow \mathrm{q}: \begin{aligned}
& \text { if } \mathrm{x} / 2 \text { is an integer, then } \mathrm{x} \text { is an even } \\
& \text { integer. }
\end{aligned}
$$

(3) UTM		Example	
Show that,$\neg(p \rightarrow q) \equiv p \wedge \neg q$			
The truth table shows that,$\neg(p \rightarrow q) \equiv p \wedge \neg q$			
p	9	$\begin{gathered} \neg(p \rightarrow \\ q) \end{gathered}$	$p \wedge \neg q$
T	T	F	F
T	F	T	T
F	T	F	F
F	F	F	F

(3) UTM		Example			
Construct the truth table for,$\mathbf{A}=-(p \vee q) \rightarrow(q \wedge p)$					
Solution:					
p	9	$(p \vee q)$	$\neg(p \vee q)$	$(q \wedge p)$	A
T	T	T	F	T	T
T	F	T	F	F	T
F	T	T	F	F	T
F	F	F	T	F	F

© UTM
 Exercise (5)

Construct the truth table for each of the following statements:
i) $\neg p \wedge q$
ii) $\neg(p \vee q) \rightarrow q$
iii) $\neg(\neg p \wedge q) \vee q$
iv) $(p \rightarrow q) \rightarrow(\neg q \rightarrow \neg p)$

Venn Diagrams are used to depict the various unions, subsets, complements, intersections etc. of sets.

(0) UTM

Theorem for Logic

Let $\boldsymbol{p}, \boldsymbol{q}$ and \boldsymbol{r} be propositions.
Idempotent laws:

$$
p \wedge p \equiv p
$$

p	$p \wedge p$	$p \vee p$
T	T	T
F	F	F

© UTM

Theorem for Logic (cont.)

Double negation law:

$$
\neg \neg p \equiv p
$$

$$
p \vee p \equiv p
$$

Truth table:
Commutative laws:

$$
\begin{aligned}
& p \wedge q \equiv q \wedge p \\
& p \vee q \equiv q \vee p
\end{aligned}
$$

© UTM

Prove: Distributive Laws

p	q	r	$p \vee(q \wedge r)$	$(p \vee q) \wedge(p \vee r)$
T	T	T	T	T
T	T	F	T	T
T	F	T	T	T
T	F	F	T	T
F	T	T	T	T
F	T	F	F	F
F	F	T	F	F
F	F	F	F	F

$$
\begin{aligned}
& p \wedge(p \vee q) \equiv p \\
& p \vee(p \wedge q) \equiv p
\end{aligned}
$$

$$
p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)
$$

$p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$
Absorption laws:

Prove: Absorption Laws

p	q	$p \wedge(p \vee q)$	$p \vee(p \wedge q)$
T	T	T	T
T	F	T	T
F	T	F	F
F	F	F	F

© UTM
 Theorem for Logic (cont.)

De Morgan's laws:

$$
\begin{aligned}
\neg(p \wedge q) & \equiv(\neg p) \vee(\neg q) \\
\neg(p \vee q) & \equiv(\neg p) \wedge(\neg q)
\end{aligned}
$$

The truth table for $\neg(p \vee q) \equiv(\neg p) \wedge(\neg q)$

p	q	$\neg(p \vee q)$	$\neg p \wedge \neg q$
T	T	F	F
T	F	F	F
F	T	F	F
F	F	T	T

Propositional functions $\boldsymbol{p}, \boldsymbol{q}$ and \boldsymbol{r} are defined as follows: p is " $n=7$ "
q is " $a>5$ "
r is " $x=0$ "
Write the following expressions in terms of $\boldsymbol{p}, \boldsymbol{q}$ and \boldsymbol{r}, and show that each pair of expressions is logically equivalent. State carefully which of the above laws are used at each stage.

```
(a) ((n=7)\vee(a>5)) (x=0)
    ((n=7) (x=0))\vee((a>5) (x=0))
(b) -((n=7) (a\leq5))
    ( }n\not=7)\vee(a>5
(c) (n=7)\vee (-((a\leq5) (x=0)))
    ((n=7)\vee(a>5))\vee (x\not=0)
```


(3)UTM
 Exercise (9)

For each pair of expressions, construct truth tables to see if the two compound propositions are logically equivalent:
(a) $p \vee(q \wedge \neg p)$
$p \vee q$
(b) $\quad(\neg p \wedge q) \vee(p \wedge \neg q)$
$(\neg p \wedge \neg q) \vee(p \wedge q)$

