

© UTM
 Defining Sets

- This can be done by:
- Listing ALL elements of the set within braces.
- Listing enough elements to show the pattern then an ellipsis.
- Use set builder notation to define "rules" for determining membership in the set.

Sets

- A set is determined by its elements and not by any particular order in which the element might be listed.
- Example,
$A=\{1,2,3,4\}$,
A might just as well be specified as $\{2,3,4,1\}$ or $\{4,1,3,2\}$

(3)UTM

Sets

- If a set is a large finite set or an infinite set, we can describe it by listing a property necessary for memberships
- Let S be a set, the notation,

$$
A=\{x \mid x \in S, P(x)\} \text { or } A=\{x \in S \mid P(x)\}
$$

means that A is the set of all elements x of S such that x satisfies the property P.

Example

- Let $A=\{1,2,3,4,5,6\}$, we can also write A as,
$A=\{x \mid x \in Z, 0<x<7\}$
if Z denotes the set of integers.
- Let $B=\{x \mid x \in Z, x>0\}, B=\{1,2,3,4, \ldots\}$

(3) UTM

Some Symbols Used With Set Builder Notation

The standard form of notation for this is called "set builder notation"
For instance, $\quad\{x \mid x$ is an odd positive integer $\}$ represents the set $\{1,3,5,7,9, \ldots\}$ $\{x \mid x$ is an odd positive integer $\}$ is read as
"the set consisting of all x such that x is an odd positive integer". The vertical bar, " | ", stands for "such that"

Other "short-hand" notation used in working with sets
" ∇ " stands for "for every"
"U" stands for "union"
" 3 " stands for "there exists"
" \subseteq " stands for "is a subset of
" \subset " stands for "is a not a (proper) subset of"
" ϵ " stands for "is an element of"
" \subset " stands for "is a (proper) subset of"
" \varnothing " stands for the "empty set"
" x " stands for "cartesian cross product"
" \not " stands for "is not an element of ${ }^{\prime}$
" $=$ " stands for "is equal to"

(3)UTM

Answer true or false
a) $\{x\} \subseteq\{x\}$
b) $\{x\} \in\{x\}$
c) $\{x\} \in\{x,\{x\}\}$
d) $\{x\} \subseteq\{x,\{x\}\}$

Equal Sets

The sets A and B are equal $(A=B)$ if and only if each element of A is an element of B and vice versa.

Formally: $A=B$ means $\forall x[x \in A \leftrightarrow x \in B]$.

Example

$A=\{1,2,3,4\}$
$B=\{x \mid x$ is an integer, $1 \leq x \leq 4\}$

Note:

There exists a nonnegative integer n such that A has n elements (A is called a finite set with n elements)

Example

- The sets $A=\{1,2,3\}, B=\{2,4,6,8\}$ and $C=\{5,7\}$
- One may choose $U=\{1,2,3,4,5,6,7,8\}$ as a universal set.
- Any superset of U can also be considered a universal set for these sets A, B, and C. For example, $U=\{x \mid x$ is a positive integer $\}$

© UTM

Cardinality of Set

- Let S be a finite set with n distinct elements, where $n \geq 0$.
- Then we write $|S|=n$ and say that the cardinality (or the number of elements) of S is n.
- Example
$A=\{1,2,3\}, \quad|A|=3$
$B=\{a, b, c, d, e, f, g\}, \quad|B|=7$

© UTM

Power Set

- The set of all subsets of a set A, denoted $P(A)$, is called the power set of A.

$$
P(A)=\{X \mid X \subseteq A\}
$$

- If $|A|=n$, then $|P(A)|=2^{n}$

(C) UTM

Exercise

- Let $X=\{1,2,2,\{1\}, a\}$
- Find:
- $|x|$
- Proper subset of X
- Power set of X
- Notice that $|A|=3$, and $|P(A)|=2^{3}=8$

