

UNIVERSITI TEKNOLOGI MALAYSIA

TEST 1

SEMESTER I - 2017/2018

SUBJECT CODE	:	SCSI1013
SUBJECT	:	DISCRETE STRUCTURE
TIME	:	2 HOURS (8.00 P.M - 10.00 P.M)
DATE	:	23 rd OCTOBER 2017

INSTRUCTIONS TO THE STUDENTS:

Please answer all questions in the answer booklet.

QUESTION 1

a) Sketch Venn diagrams that show the universal set, U, the sets *A* and *B*, and a single element *x* in each of the following cases:

(i)
$$x \in A$$
; $x \notin B$; $B \subset A$ (2 marks)

(ii) $x \in A$; $x \in B$; A is not a subset of B; B is not a subset of A (2 marks)

b) Prove the following identity, stating carefully which of the set laws you are using at each stage of the proof.

$$B \cup (\emptyset \cap A) = B \tag{4 marks}$$

c) In a certain programming language, all variable names have to be 3 characters long. The first character must be a letter from 'a' to 'z'; the others can be letters or digits from 0 to 9. If $L = \{a, b, c, ..., z\}, D = \{0, 1, 2, ..., 9\}$, and $V = \{\text{permissible variable names}\}$, use a Cartesian product to complete:

 $V = \{pqr \mid (p, q, r) \in\}$

(2 marks)

QUESTION 2

- a) Suppose that the variable x represents student, F(x) means "x is freshman," and M(x) means "x is a math major". Determine the symbolic statement equivalent to the following statement.
 - i) No math major is a freshman. (1 mark)
 - ii) Some freshmen are math major. (1 mark)
- b) Let P(x,y): 2x + y = 1, where the domain of discourse is the set of all integers. What are the truth values of the following:
 - i) $\forall x \exists y P(x, y)$ (2 marks)
 - ii) $\forall x \forall y P(x, y)$ (2 marks)

[20 MARKS]

c) Evaluate the following logical equivalent using truth table.

$$(\neg p \to (q \lor r)) = (q \to (p \lor r))$$
(5 marks)

e) Prove the following compound proposition using logical law.

$$(P \lor \neg Q) \lor (R \land (Q \lor \neg Q)) = R \lor (P \lor \neg Q)$$
(4 marks)

f) Proof directly that,

"If *m* is an even integer and *n* is an odd integer then m+n is an odd"

(5 marks)

[25 MARKS]

QUESTION 3

a) $A = \{(1,3), (2,4), (-4,-8), (3,9), (1,5), (3,6)\}$. For all $(a,b), (c,d) \in A$. Determine *R*, a relation defined on *A* as

$$(a,b)R(c,d) \Leftrightarrow ad = bc$$
 (5 marks)

- b) Determine whether the following relation is reflexive, symmetric, antisymmetric and/or transitive. (Note: Use diagram to assist your justification and you can define an appropriate set if necessary).
 - i) R is relation on the set of people where $(a,b) \in R$, if a is taller than b.

(4 marks)

ii) R is a relation on the set of all web pages where $(a,b) \in R$, if everyone who has visited web page a also visited web page b.

(3 marks)

iii) *R* is a relation on the set of people in the Facebook friend list, where $(a,b) \in R$, if *a* is a friend of *b*.

(3 marks)

c) Determine whether the relation presented by the following matrices is equivalence relation.

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{pmatrix}$$

(10 marks)

QUESTION 4

a) Which of the following relations are functions from *A* to *B*. Write their domain and range. If it is not a function, give a reason.

i)
$$R = \{(1,-2), (3,7), (4,-6), (8,1)\}, A = \{1,3,4,8\}, B = \{-2,7,-6,1,2\}$$

ii) $R = \{(1,0), (1,-1), (2,3), (4,1)\}, A = \{1,2,4\}, B = \{0,-1,3,1,0\}$
(2 marks)

i)
$$R = \{(1,-1), (2,-2), (3,-3), (4,-4), (5,-5)\}, A = \{0,1,2,3,4,5\}, B = \{-1,-2,-3,-4,-5\}$$

b) Prove that

 $f: X \rightarrow Y$ defined by f(x) = 3y - 7 is a one-to-one function.

(4 marks)

[16 MARKS]

c) If
$$f(x) = \sqrt{x+1}$$
 and $g(x) = x^2 + 2$

i) Calculate $f \circ g$ (2 marks)

ii) Calculate
$$g \circ f$$
 (2 marks)

QUESTION 5

a) Determine s_5 if $s_0, s_1, s_2, ...$ is a sequence satisfying the given recurrence relation and initial conditions.

$$s_n = 2s_{n-1} + s_{n-2} - s_{n-3}$$
 for $n \ge 3$, $s_0 = 2$, $s_1 = -1$, $s_2 = 4$

(3 marks)

b) A consumer purchased items costing RM280 with a department store credit card that charges 1.5% interest per month compounded monthly. Write a recurrence relation and initial condition for b_n , the balance of the consumer's account after *n* months if no further charges occur and the minimum monthly payment of RM25 is made.

(3 marks)

c) Write a recursive algorithm to find the *n* term of sequence defined by $a_1 = 2$, $a_2 = 3$, and $a_n = a_{n-1}a_{n-2}$ for $n \ge 3$. Then, use the algorithm to trace a_7 .

(10 marks)

Theorem for Logic	

Indempotent Laws	$p \land p \equiv p$
	$p \lor p \equiv p$
Double negation laws	$\neg \neg p \equiv p$
Commutative law	$p \land q = q \land p$
	$p \lor q \equiv q \lor p$
Associative laws	$(p \land q) \land r \equiv p \land (q \land r)$
	$(p \lor q) \lor r \equiv p \lor (q \lor r)$
	$p \lor (q \land r) = (p \lor q) \land (p \lor r)$
Distributive laws	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
Absorption Laws	$p \land (p \lor q) = p$
	$p \lor (p \land q) = p$
De Morgan's Laws	$\neg (p \land q) \equiv (\neg p) \lor (\neg q)$
	$\neg (p \lor q) \equiv (\neg p) \land (\neg q)$
Distributive laws Absorption Laws De Morgan's Laws	$p \lor (q \land r) = p \lor (q \lor r)$ $p \lor (q \land r) = (p \lor q) \land (p \lor r)$ $p \land (q \lor r) = (p \land q) \lor (p \land r)$ $p \land (p \lor q) = p$ $p \lor (p \land q) = p$ $\neg (p \land q) = (\neg p) \lor (\neg q)$ $\neg (p \lor q) = (\neg p) \land (\neg q)$