UNIVERSITI TEKNOLOGI MALAYSIA TEST 1

SEMESTER I - 2017/2018

SUBJECT CODE	$:$	SCSI1013
SUBJECT	$:$	DISCRETE STRUCTURE
TIME	$:$	2 HOURS (8.00 P.M - 10.00 P.M)
DATE	$:$	$\mathbf{2 3}^{\text {rd }}$ OCTOBER 2017

INSTRUCTIONS TO THE STUDENTS:
Please answer all questions in the answer booklet.
a) Sketch Venn diagrams that show the universal set, \mathbf{U}, the sets A and B, and a single element x in each of the following cases:
(i) $x \in A ; x \notin B ; B \subset A$
(ii) $x \in A ; x \in B ; A$ is not a subset of $B ; B$ is not a subset of A
b) Prove the following identity, stating carefully which of the set laws you are using at each stage of the proof.

$$
\begin{equation*}
B \cup(\varnothing \cap A)=B \tag{4marks}
\end{equation*}
$$

c) In a certain programming language, all variable names have to be 3 characters long. The first character must be a letter from 'a' to 'z'; the others can be letters or digits from 0 to 9 . If $L=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots, \mathrm{z}\}, D=\{0,1,2, \ldots, 9\}$, and $V=\{$ permissible variable names $\}$, use a Cartesian product to complete:

$$
V=\{p q r \mid(p, q, r) \in \ldots \ldots\}
$$

QUESTION 2

[20 MARKS]
a) Suppose that the variable x represents student, $F(x)$ means " x is freshman," and $M(\mathrm{x})$ means " x is a math major". Determine the symbolic statement equivalent to the following statement.
i) No math major is a freshman.
ii) Some freshmen are math major.
b) Let $P(x, y): 2 x+y=1$, where the domain of discourse is the set of all integers. What are the truth values of the following:
i) $\forall x \exists y P(x, y)$
ii) $\forall x \forall y P(x, y)$
c) Evaluate the following logical equivalent using truth table.

$$
\begin{equation*}
(\neg p \rightarrow(q \vee r)) \equiv(q \rightarrow(p \vee r)) \tag{5marks}
\end{equation*}
$$

e) Prove the following compound proposition using logical law.

$$
(P \vee \neg Q) \vee(R \wedge(Q \vee \neg Q)) \equiv R \vee(P \vee \neg Q)
$$

f) Proof directly that,
"If m is an even integer and n is an odd integer then $m+n$ is an odd"

QUESTION 3

[25 MARKS]
a) $A=\{(1,3),(2,4),(-4,-8),(3,9),(1,5),(3,6)\}$. For all $(a, b),(c, d) \in A$. Determine R, a relation defined on A as

$$
\begin{equation*}
(a, b) R(c, d) \Leftrightarrow a d=b c \tag{5marks}
\end{equation*}
$$

b) Determine whether the following relation is reflexive, symmetric, antisymmetric and/or transitive. (Note: Use diagram to assist your justification and you can define an appropriate set if necessary).
i) R is relation on the set of people where $(a, b) \in R$, if a is taller than b.
ii) R is a relation on the set of all web pages where $(a, b) \in R$, if everyone who has visited web page a also visited web page b.
iii) R is a relation on the set of people in the Facebook friend list, where $(a, b) \in R$, if a is a friend of b.
c) Determine whether the relation presented by the following matrices is equivalence relation.

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1
\end{array}\right)
$$

a) Which of the following relations are functions from A to B. Write their domain and range. If it is not a function, give a reason.
i) $R=\{(1,-2),(3,7),(4,-6),(8,1)\}, \quad A=\{1,3,4,8\}, \quad B=\{-2,7,-6,1,2\}$
(2 marks)
ii) $R=\{(1,0),(1,-1),(2,3),(4,1)\}, \quad A=\{1,2,4\}, \quad B=\{0,-1,3,1,0\}$
(2 marks)
i) $R=\{(1,-1),(2,-2),(3,-3),(4,-4),(5,-5)\}, \quad A=\{0,1,2,3,4,5\}, \quad B=\{-1,-2,-3,-4,-5\}$
b) Prove that

$$
f: X \rightarrow Y \text { defined by } f(x)=3 y-7 \text { is a one-to-one function. }
$$

(4 marks)
c) If $f(x)=\sqrt{x+1}$ and $g(x)=x^{2}+2$
i) Calculate $f \circ g$
ii) Calculate $g \circ f$

QUESTION 5
[16 MARKS]
a) Determine s_{5} if $s_{0}, s_{1}, s_{2}, \ldots$. is a sequence satisfying the given recurrence relation and initial conditions.

$$
s_{n}=2 s_{n-1}+s_{n-2}-s_{n-3} \text { for } n \geq 3, s_{0}=2, s_{1}=-1, s_{2}=4
$$

b) A consumer purchased items costing RM280 with a department store credit card that charges 1.5% interest per month compounded monthly. Write a recurrence relation and initial condition for b_{n}, the balance of the consumer's account after n months if no further charges occur and the minimum monthly payment of RM25 is made.
(3 marks)
c) Write a recursive algorithm to find the n term of sequence defined by $a_{1}=2, a_{2}=3$, and $a_{n}=a_{n-1} a_{n-2}$ for $n \geq 3$. Then, use the algorithm to trace a_{7}.
(10 marks)

Theorem for Logic

Indempotent Laws	$p \wedge p \equiv p$ $p \vee p \equiv p$
Double negation laws	$\neg \neg p \equiv p$
Commutative law	$p \wedge q \equiv q \wedge p$ $p \vee q \equiv q \vee p$
Associative laws	$(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$ $(p \vee q) \vee r \equiv p \vee(q \vee r)$
Distributive laws	$p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$ $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$
Absorption Laws	$p \wedge(p \vee q) \equiv p$ $p \vee(p \wedge q) \equiv p$
De Morgan's Laws	$\neg(p \wedge q) \equiv(\neg p) \vee(\neg q)$ $\neg(p \vee q) \equiv(\neg p) \wedge(\neg q)$

