

UNIVERSITI TEKNOLOGI MALAYSIA

TEST 1

SEMESTER I 2016/2017

SUBJECT CODE	: SCSI1013
SUBJECT NAME	: DISCRETE STRUCTURE
YEAR/COURSE	: 1SCSJ/SCSR/SCSV/SCSB/SCSD
TIME	: 2 HOURS (8.00 PM – 10.00 PM)
DATE	: 13 OKTOBER 2016
VENUE	: BK1-6, N28

INSTRUCTIONS TO THE STUDENTS:

Answer all questions in the answer booklet.

NAME	
IC NO	
SECTION	
LECTURER	

(This question paper consist of 5 pages including this pages)

[10 marks]

- a) Let A= {a, {a}, b, {a, b}}. State whether the following statement is TRUE or FALSE.
 i. {a} ⊆A (1 mark)
 ii. {a, b}∈ A (1 mark)
- b) Given set $B = \{x | x \in Z, x^2 + 6 \le 10\}$, where Z is the set of integers. List the elements of set B. (1 mark)
- c) A group of 35 students attended English class for one semester. In order to sit for final exam, they need to have at least 80% attendance. 10 students have 100% attendance. 15 students have ≥90% attendance. 30 students have ≥75% attendance. 5 students have lower than 75% attendance and 8 are not allowed to sit for final exam.
 - i. How many students are not allowed to sit for final exam with attendance < 80% but $\geq 75\%$? (1 mark)
 - ii. Find the number of students with attendance <90% but $\ge 80\%$? (1 mark)
- d) The following Venn Diagram in Figure 1 shows set A, B and C. Find $(A \cap B \cap C) \times (B - C).$ (2 marks)

Figure 1

e) Let *A* and *B* be sets. Use properties of sets to simplify $(A \cup B') \cap (B \cap C)'$.

(3 marks)

[25 marks]

- a) Base on the propositions *p*, *q* and *r*, rewrite the given statements using logic symbols.
 p: Power button is on
 - *q* : Computer shuts down
 - *r* : Computer displays start screen
 - i. Computer displays start screen only with the condition that the power button is on. (1 mark)
 - ii. If the power button is on then the computer does not shuts down or displays start screen. (2 marks)
 - iii. Once the power button is off, it is either the computer shuts down or does not displays start screen. (2 marks)
- b) State the truth value for the given compound propositions below provided the truth values for p and r is FALSE and q is TRUE.
 - i. $(p \rightarrow \neg q) \land \neg (r \lor q)$ (2 marks)ii. $(\neg p \land \neg q) \rightarrow (p \lor \neg r)$ (2 marks)iii. $\neg (\neg p \leftrightarrow \neg q) \land r$ (2 marks)
- c) Let P(x, y) = (x * y)² ≥ 1. Given the domain of discourse for x and y is set of integer,
 Z. Determine the truth value of the following statements. Give the value of x and y that make the statement TRUE or FALSE.

i.	$\exists x \exists y P(x, y)$	(2 marks)
ii.	$\forall x \forall y P(x, y)$	(2 marks)

d) Use truth table to check if the compound propositions A and B are logically equivalent.

$$A = (\neg p \lor q) \longrightarrow r$$
$$B = \neg q \leftrightarrow (\neg p \lor r)$$

(6 marks)

d) Simplify the following compound propositions using Laws of Logic.

$$(a \lor b) \land \neg (\neg a \land b)$$
(3 marks)

[25 marks]

a) Let *R* be the relation from $X = \{1, 2, 3, 4\}$ to $Y = \{1, 3, 5, 7\}$ defined by *xRy* if and only if $x \in X$, $y \in Y$ and $x + 3y \le 12$.

i. List the elements of the set <i>R</i> .	(3 marks)
ii. Find the domain of <i>R</i> .	(1 mark)
iii. Find the range of <i>R</i> .	(1 mark)

b) Let $A = \{a, b, c\}$ and $R: A \rightarrow A$. Draw the digraph representing the following properties:

i.	Symmetric and reflexive but not transitive	(5 marks)
ii.	Reflexive but not anti-symmetric.	(3 marks)
iii.	Write a matrix representing an irreflexive relation <i>R</i> on a set <i>A</i> .	(3 Marks)

c) Let $B = \{d, e, f, g\}$ and R be the relation on B that has the matrix M_R

	1	1	1	0	
M –	0	1	0	1	
$\mathbb{N}_R =$	1	0	1	0	
	0	1	1	1	_

- i. List in-degrees and out-degrees of all vertices. (4 marks)
- ii. Determine whether the relation R on the set B represented by M_R is an equivalence relation. Explain. (5 marks)

Question 4

[10 marks]

Here are two functions $f: \{1, 2, 3\} \rightarrow \{10, 11, 12, 13\}$ and $g: \{10, 11, 12, 13\} \rightarrow \{4, 5, 6\}$ whose rules are given in Table 1.

Table 1										
	X	1	2	3		x	10	11	12	13
	f(x)	11	13	10		g(x)	4	5	4	6
a) What is $f(1)$? (1 mark)										
b) What is $g(11)$? (1 mark)										
c) Draw arrow diagrams for f and g .						(3 marks)			
d) Which of these compositions can be defined: gof, gog, fog, or fof?						f? (1 mark)			

e) For any of the compositions above that are defined, give the domain and codomain, and draw the arrow diagram. (4 marks)

[10 marks]

a) Let, $f: \mathbf{R} \to \mathbf{R}$ be the function with rule f(x) = 5x-7

i. Show that f is one-to-one.	(2 marks)
ii. Find the inverse of <i>f</i> .	(2 marks)

(note: *R* is the set of real numbers)

b) Let $X = \{-1, 0, 1\}$ and $Y = \{-2, 0, 2\}$. For each $x \in X$, define functions $f: X \rightarrow Y$ and $g: X \rightarrow Y$ by:

$$f(x) = x^2 - x$$
$$g(x) = 2x$$

Determine if f and g are one-to-one, onto Y, and/or bijection. (6 marks)

Question 6

[10 marks]

A robot can take steps of 1, 2 or 3 meters. As examples (Table 2):

Table 2					
Distance	Sequence of Steps	Number of Ways to Walk			
1	1	1			
2	1, 1 or 2	2			
3	1, 1, 1 or 1, 2 or 2,1 or 3	4			
4	1, 1, 1, 1 or 1, 1, 2 or 1, 2, 1	7			
	or 2, 1, 1 or 2, 2, or 1, 3 or				
	3,1				

Let walk(n) denote the number of ways the robot can walk *n* meters. We have observed that,

walk(1) = 1, walk(2) = 2, walk(3) = 4.

Now suppose that n>3. Since the walk must begin with either a 1-meter, 2-meter or a 3-meter step, all of the ways to walk n meters are accounted for. We obtain the formula,

walk(n) = walk(n-1) + walk(n-2) + walk(n-3)

For example,

a) Write the recursive algorithm to calculate the number of ways the robot can walk *n* meters.

(6 marks)

b) Find *walk*(6).

(4 marks)

*** end of questions ***