Faculty of
Computing

UNIVERSITI TEKNOLOGI MALAYSIA

TEST 1

SEMESTER I - 2015/2016

SUBJECT CODE	$:$ SCSI1013
SUBJECT NAME	$:$ DISCRETE STRUCTURE
YEAR/COURSE	$:$
TIME	$: 2$ HOURS
DATE	$:$
VENUE	$:$

INSTRUCTIONS TO THE STUDENTS:
Answer all questions in the given answer booklet.

Name	
I/C No.	
Year/Course	
Section	
Lecturer Name	

This questions paper consists of $\mathbf{6}$ printed pages including this page.

Question 1 [5 Marks]

a) Calculate the size (cardinality) of these sets, given $A=\{1,3,5\}$ and $B=\{2,4,6,8\}$. This can be done using only the facts that $|A|=3$ and $|B|=4$. You do not need to list all elements of the new sets.
i. $|A \times B|$
ii. $|P(A) \times P(B)|$
b) Let A and B be sets. Use properties of sets to show that $(A \cap B) \cup\left(A^{\prime} \cup B\right)^{\prime}=A$.

Question 2 [15 marks]

a) Let $D=\{1,3,5,7,8,9\}$. Decide whether each of the following statements is true for all elements of D. For each that is not, give a counterexample. That is, provide a number in D for which the statement is not true.
i. $\quad x$ is even and $x>7$
ii. $\quad x$ is odd or $x>7$
iii. $\quad x$ is not odd and $x \leq 7$
iv. x is odd
b) Use truth table to check if the symbolic logic statements are equivalent.

$$
p \wedge(p \rightarrow q) \text { and } p \wedge q
$$

c) Let $P(x)$ be the statement " x can speak Arabic" and let $Q(x)$ be the statement " x knows computer language $\mathrm{C}++$ ". Express each of these sentences in term of $P(x)$, $Q(x)$, quantifiers, and logical connectives. The domain for quantifiers consists of all students at your faculty.
i. There is a student at your faculty who can speak Arabic and who knows $\mathrm{C}++$.
ii. Every student at your faculty either can speak Arabic or knows C++.
d) For each of the compound propositions, state either TRUE or FALSE if \boldsymbol{p} and \boldsymbol{r} are TRUE and \boldsymbol{q} is FALSE.
i. $\quad(p \rightarrow q) \wedge(\neg p \rightarrow r)$
ii. $\quad(p \leftrightarrow q) \vee(\neg q \leftrightarrow r)$

Question 3 [20 Marks]

a) Let $A=\{3,4,5\}$ and $B=\{2,4,6,8,10\}$ and R be the relation from A to B defined by $a R b$ if and only if $2 a \leq b+1$.
i. List the ordered pair of the relation R.
ii. Find the domain and range.
b) Let $A=\{1,2,3,4,5\}$ and the relation R on A represented by the digraph in Figure 1.

Figure 1
Based on the digraph in Figure 1, determine:
i. The in-degree and the out-degree of each vertex.
ii. Matrix relation of R, M_{R}
c) Determine whether the relation $R=\{(1,2),(1,4),(4,5),(5,3),(1,3),(2,2)\}$ on set $D=\{1,2,3,4,5\}$ is asymmetric? Explain.
d) Determine whether the relation R on $A=\{a, b, c, d\}$ whose matrix M_{R} is given below is an equivalence relation? Explain.

$$
M_{R}=\begin{gathered}
a \\
a \\
b \\
c \\
d \\
d
\end{gathered}\left[\begin{array}{ccc}
b & c & d \\
0 & 1 & 1
\end{array}\right)
$$

Question 4 [20 marks]

a) Let $J=\{0,1,2,3,4\}$ and define a function $f: J \rightarrow J$ as follows: For each $x \in J, f(x)=\left(x^{3}+2 x+4\right) \bmod 5$. Find the following:
i. $f(0)$
ii. $f(1)$
b) Let $X=\{1,2,3\}, Y=\{1,2,3,4\}$ and $W=\{1,2\}$.
i. Draw the arrow diagram to define function $f: X \rightarrow Y$ that is one-to-one but not onto.
ii. List three ordered pairs to define function $g: X \rightarrow W$ that is onto but not one-to-one.
c) Let $A=\{\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}\}$ and $B=\{1,2,3,4\}$. Which of the following can represent as bijection function from A to B ? Justify your answer.
i. $\quad g=\{(\mathrm{p}, 2),(\mathrm{q}, 1),(\mathrm{r}, 4),(\mathrm{s}, 3)\}$
ii. $\quad f=\{(\mathrm{p}, 1),(\mathrm{q}, 1),(\mathrm{r}, 2),(\mathrm{s}, 2)\}$
iii. $\quad h=\{(\mathrm{p}, 1),(\mathrm{p}, 2),(\mathrm{p}, 3),(\mathrm{p}, 4)\}$
d) Function f and g are defined by formulas:

$$
f(x)=x^{3} \text { and } g(x)=x-1, \text { for all real number } x .
$$

Find $g \circ f$ and $f \circ g$. Determine whether $g \circ f$ equals $f \circ g$.
e) Write a recursive algorithm to find the n term of the sequence defined by,

$$
k_{0}=-1, \quad k_{1}=2, \text { and } k_{n}=k_{n-1}+2 k_{n-2}, \text { for } n \geq 2
$$

Then, trace the algorithm for $n=4$.

Properties On Sets

Commutative laws

$A \cup B=B \cup A$
$A \cap B=B \cap A$

> Associative laws
> $A \cup(B \cup C)=(A \cup B) \cup C$
> $A \cap(B \cap C)=(A \cap B) \cap C$

Distributive laws
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

Absorption laws
 $A \cap(A \cup B)=A$
 $A \cup(A \cap B)=A$

Idempotent laws

$A \cup A=A$
$A \cap A=A$

Complement laws

$\left(A^{\prime}\right)^{\prime}=A$
$A \cup A^{\prime}=U$
$A \cap A^{\prime}=\varnothing$
$\varnothing^{\prime}=U$
$U^{\prime}=\varnothing$

De Morgan's laws
$(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
$(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$

Properties of universal set
$A \cup U=U$
$A \cap U=A$

Properties of empty set
$A \cup \varnothing=A$
$A \cap \varnothing=\varnothing$

