

UNIVERSITI TEKNOLOGI MALAYSIA

TEST 1

SEMESTER I - 2015/2016

SUBJECT CODE	: SCSI1013
SUBJECT NAME	: DISCRETE STRUCTURE
YEAR/COURSE	:
TIME	: 2 HOURS
DATE	:
VENUE	:

INSTRUCTIONS TO THE STUDENTS: Answer all questions in the given answer booklet.

Name	
I/C No.	
Year/Course	
Section	
Lecturer Name	

This questions paper consists of **6** printed pages including this page.

Question 1 [5 Marks]

- a) Calculate the size (cardinality) of these sets, given $A = \{1, 3, 5\}$ and $B = \{2, 4, 6, 8\}$. This can be done using only the facts that |A| = 3 and |B| = 4. You do not need to list all elements of the new sets.
 - i. |A×B|
 - ii. $|P(A) \times P(B)|$

(2 marks)

b) Let *A* and *B* be sets. Use properties of sets to show that $(A \cap B) \cup (A' \cup B)' = A$. (3 marks)

Question 2 [15 marks]

- a) Let $D=\{1, 3, 5, 7, 8, 9\}$. Decide whether each of the following statements is true for all elements of D. For each that is not, give a counterexample. That is, provide a number in D for which the statement is not true.
 - i. x is even and x > 7
 - ii. $x ext{ is odd or } x > 7$
 - iii. x is not odd and $x \le 7$
 - iv. x is odd

(4 marks)

b) Use truth table to check if the symbolic logic statements are equivalent.

$$p \land (p \rightarrow q) \text{ and } p \land q$$

(3 marks)

- c) Let P(x) be the statement "x can speak Arabic" and let Q(x) be the statement "x knows computer language C++". Express each of these sentences in term of P(x), Q(x), quantifiers, and logical connectives. The domain for quantifiers consists of all students at your faculty.
 - i. There is a student at your faculty who can speak Arabic and who knows C++.
 - ii. Every student at your faculty either can speak Arabic or knows C++.

(4 marks)

Page:2

- d) For each of the compound propositions, state either TRUE or FALSE if p and r are TRUE and q is FALSE.
 - i. $(p \rightarrow q) \land (\neg p \rightarrow r)$
 - ii. $(p \leftrightarrow q) \lor (\neg q \leftrightarrow r)$

(4 marks)

Question 3 [20 Marks]

- a) Let $A = \{3,4,5\}$ and $B = \{2,4,6,8,10\}$ and R be the relation from A to B defined by aRb if and only if $2a \le b+1$.
 - i. List the ordered pair of the relation *R*.
 - ii. Find the domain and range.

(4 marks)

b) Let $A = \{1, 2, 3, 4, 5\}$ and the relation R on A represented by the digraph in Figure 1.

Based on the digraph in Figure 1, determine:

i. The in-degree and the out-degree of each vertex.

(3 marks)

ii. Matrix relation of R, M_R

(2 marks)

c) Determine whether the relation $R = \{(1,2), (1,4), (4,5), (5,3), (1,3), (2,2)\}$ on set $D = \{1,2,3,4,5\}$ is asymmetric? Explain.

(4 marks)

d) Determine whether the relation R on $A = \{a, b, c, d\}$ whose matrix M_R is given below is an equivalence relation? Explain.

$$M_{R} = \begin{bmatrix} a & b & c & d \\ 1 & 1 & 0 & 1 \\ b \\ c \\ d \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

(7 marks)

Question 4 [20 marks]

- a) Let $J = \{0, 1, 2, 3, 4\}$ and define a function $f: J \rightarrow J$ as follows: For each $x \in J, f(x) = (x^3 + 2x + 4) \mod 5$. Find the following:
 - i. *f*(0)

```
ii. f(1)
```

(2 marks)

b) Let $X = \{1, 2, 3\}$, $Y = \{1, 2, 3, 4\}$ and $W = \{1, 2\}$.

i. Draw the arrow diagram to define function $f: X \rightarrow Y$ that is one-to-one but not onto.

(2 marks)

ii. List three ordered pairs to define function $g: X \rightarrow W$ that is onto but not one-to-one.

(2 marks)

c) Let $A = \{p, q, r, s\}$ and $B = \{1, 2, 3, 4\}$. Which of the following can represent as bijection function from A to B? Justify your answer.

i.
$$g = \{(p,2), (q,1), (r,4), (s,3)\}$$

ii.
$$f = \{(p,1), (q,1), (r,2), (s,2)\}$$

iii. $h = \{(p,1), (p,2), (p,3), (p,4)\}$

(2 marks)

d) Function *f* and *g* are defined by formulas:

 $f(x) = x^3$ and g(x) = x - 1, for all real number x.

Find $g \circ f$ and $f \circ g$. Determine whether $g \circ f$ equals $f \circ g$.

(6 marks)

e) Write a recursive algorithm to find the *n* term of the sequence defined by,

 $k_0 = -1$, $k_1 = 2$, and $k_n = k_{n-1} + 2k_{n-2}$, for $n \ge 2$.

Then, trace the algorithm for n = 4.

(6 marks)

** End of Questions **

Properties On Sets

Commutative laws $A \cup B = B \cup A$ $A \cap B = B \cap A$

Associative laws

 $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$

Distributive laws

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Absorption laws

 $A \cap (A \cup B) = A$ $A \cup (A \cap B) = A$

Idempotent laws

 $A \cup A = A$ $A \cap A = A$

Complement laws

(A')' = A $A \cup A' = U$ $A \cap A' = \emptyset$ $\emptyset' = U$ $U' = \emptyset$

De Morgan's laws

 $(A \cup B)' = A' \cap B'$ $(A \cap B)' = A' \cup B'$

Properties of universal set $A \cup U = U$

 $A \cap U = A$

Properties of empty set $A \cup \emptyset = A$ $A \cap \emptyset = \emptyset$