## Question 1

i) Draw a graph with the following features: vertex set $\mathrm{V}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{v}_{4}, \boldsymbol{v}_{5}\right\}$ and edge set $\mathrm{E}=\left\{\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{3}\right\},\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{4}\right\},\left\{\boldsymbol{v}_{3}, \boldsymbol{v}_{4}\right\},\left\{\boldsymbol{v}_{3}, \boldsymbol{v}_{5}\right\},\left\{\boldsymbol{v}_{4}, \boldsymbol{v}_{5}\right\}\right\}$ [3 marks]
ii) Based on the answer in (i), list the vertex that is not adjacent and the isolated vertex.
iii) Are the following graphs in Figure 1(a) and 1(b) are isomorphic? Justify your answer.
[4 marks]


Figure 1
iv) Given graphs in Figure 3(a), (b) and (c), determine whether they contain an Euler Circuit or an Euler path? Give your answer by completing Table 1.

(a)

(b)

(c)

Figure 2

## Table 1

| Graph | Number of odd vertices <br> (vertices connected to an <br> odd number of edges) | Number of even vertices <br> (vertices connected to an <br> even number of edges) | What does the path <br> contain? <br> (Euler path = P); <br> Euler circuit = C; <br> Neither = N) |
| :--- | :--- | :--- | :--- |
| 2(a) |  |  |  |
| 2(b) |  |  |  |
| 2(c) |  |  |  |

v) Use Dijkstra's Algorithm on the graph in Figure 3 and find the shortest paths from $O$ to $T$.


Figure 3

## Question 2

i) Derive the Boolean expression for the logic circuit in Figure 4.


Figure 4
ii) From the truth table in Table 2, determine the DNF expression.

Table 2

| Inputs |  |  | Output |
| :---: | :---: | :---: | :---: |
| A | B | C | X |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |

iii) Generate a Karnaugh map of the following expression.

$$
A B C \bar{D}+\bar{A} \bar{B} C D+A \bar{B} \bar{C} D+\bar{A} \bar{B} \bar{C} \bar{D}
$$

iv) Find the minimal sum of product/ DNF for the given K-maps.

v) Using appropriate properties, prove that $(a+b)(b+c)(c+a)=a b+b c+c a$
i) A diagram for automaton is given as follows:


Figure 5
(a) Based on the diagram in Figure 5, determine:

1) Finite states
2) Initial states
3) Final states.
(b) Construct the state transition table.
ii) Given state transition diagram in Figure 6, find the sequence of configurations and state if the word is accepted by the language of the automaton, or not.
(a) abbbaaaba
(b) bbbbb


Figure 6
iii) A transition diagram of M is given in Figure 7.


Figure 7
(a) Write the transition table of M.
(b) What is the output string if the input string is $a a b b$ ?
(c) What is the output if the input string is $b a b a$
(d) Is the string $a b b a$ accepted by M?

A description of an automatic telephone answering machine is shown in Table 3. When a call arrives, the phone rings. If the phone is not picked up, then on the third ring, the machine answers. It plays a pre-recorded greeting requesting that the caller leave a message, then records the caller's message, and then automatically hangs up. If the phone is answered before the third ring, the machine does nothing.

Table 3

| States |  | Input |  | Output |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $q_{0}$ | idle (nothing is <br> happening) | $i_{1}$ | incoming ringing <br> signal | 0 | default output when there is <br> nothing interesting to say |
| $\mathrm{q}_{1}$ | one ring has arrived | $i_{2}$ | a telephone is picked <br> up | 1 | answer the phone and start the <br> greeting message |
| $\mathrm{q}_{2}$ | two rings have <br> arrived | $i_{3}$ | greeting message is <br> finish playing | 2 | start recording the incoming <br> message |
| $\mathrm{q}_{3}$ | playing the greeting <br> message | $i_{4}$ | end of message <br> detected | 3 | recorded an incoming message |
| $\mathrm{q}_{4}$ | recording the <br> message | $i_{5}$ | no input of interest |  |  |

i) Construct a state transition table by completing Table 4.

## Table 4

|  | $f_{s}$ |  |  |  |  |  | $f_{o}$ |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $i_{1}$ | $i_{2}$ | $i_{3}$ | $i_{4}$ | $i_{5}$ | $i_{1}$ | $i_{2}$ | $i_{3}$ | $i_{4}$ | $i_{5}$ |  |  |
| $q_{0}$ | $q_{1}$ |  |  |  |  | 0 |  |  |  |  |  |  |
| $q_{1}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| $q_{2}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| $q_{3}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| $q_{4}$ |  |  |  |  |  |  |  |  |  |  |  |  |

ii) Based on answer in (i), construct a state transition diagram for the telephone answering machine.

## Question 5

i) Consider the following encoding function $f: B^{2} \rightarrow B^{6}$ defined by

$$
\begin{aligned}
& f(00)=000000 \\
& f(01)=010110 \\
& f(10)=100101 \\
& f(11)=110001
\end{aligned}
$$

(a) What is the minimum distance of the code?
(b) Find the error detection capability of this code.
ii) Consider a (3,6) code with Boolean matrix, $H=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$

Determine
(a) $f_{H}(010)$
[2 marks]
(b) $f_{H}(111)$
iii) Given the $(2,4)$ group encoding function $f: B^{2} \rightarrow B^{4}$ defined by

$$
\begin{aligned}
& f(00)=0000 \\
& f(01)=0111 \\
& f(10)=1001 \\
& f(11)=1111
\end{aligned}
$$

Decode word 1101 based on the maximum likelihood decoding function. [12 marks]

