- i) Draw a graph with the following features: vertex set $V = \{v_1, v_2, v_3, v_4, v_5\}$ and edge set $E = \{\{v_1, v_3\}, \{v_1, v_4\}, \{v_3, v_4\}, \{v_3, v_5\}, \{v_4, v_5\}\}$ [3 marks]
- ii) Based on the answer in (i), list the vertex that is not adjacent and the isolated vertex.[2 marks]
- iii) Are the following graphs in Figure 1(a) and 1(b) are isomorphic? Justify your answer.

Figure 1

iv) Given graphs in Figure 3(a), (b) and (c), determine whether they contain an Euler Circuit or an Euler path? Give your answer by completing Table 1. [6 marks]

Figure 2

Table 1

Graph	Number of odd vertices	Number of even vertices	What does the path
	(vertices connected to an	(vertices connected to an	contain?
	odd number of edges)	even number of edges)	(Euler path = P);
			Euler circuit = C;
			Neither = N)
2(a)			
2(b)			
2(c)			

v) Use Dijkstra's Algorithm on the graph in Figure 3 and find the shortest paths from O to T.
 [10 marks]

Figure 3

i)

ii) From the truth table in Table 2, determine the DNF expression. [4 marks]

Derive the Boolean expression for the logic circuit in Figure 4.

Table 2

	nputs	Output	
Α	B	С	Х
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

- iii) Generate a Karnaugh map of the following expression. [3 marks] $ABC\overline{D} + \overline{AB}CD + A\overline{B}\overline{C}D + \overline{AB}\overline{C}\overline{D}$
- iv) Find the minimal sum of product/ DNF for the given K-maps. [5 marks]

Y				
cò	в 00	01	11	10
00	1	0	0	1
01	0	1	0	1
11	1	1	0	0
10	1	1	0	1

v) Using appropriate properties, prove that (a+b)(b+c)(c+a) = ab+bc+ca

[5 marks]

[3 marks]

[20 Marks]

Question 3

(a)

0 0 S_1 S_4 \}⊷ $\mathbf{1}$ 1 0 0, 1 S_3 S_0 5 $\mathbf{1}$ 0 0 1 1 S_2 S_5

Based on the diagram in Figure 5, determine:

- 1) Finite states[1 mark]2) Initial states[1 mark]3) Final states.[1 mark](b) Construct the state transition table.[3 marks]
- ii) Given state transition diagram in Figure 6, find the sequence of configurations and state if the word is accepted by the language of the automaton, or not.

(a)	abbbaaaba	[2 marks]
(b)	LLLL	[2 montro]
(b)	bbbbb	[2 marks]

i) A diagram for automaton is given as follows:

iii) A transition diagram of M is given in Figure 7.

Figure 7

(a)	Write the transition table of M.	[3 marks]
(b)	What is the output string if the input string is <i>aabb</i> ?	[2 marks]
(c)	What is the output if the input string is <i>baba</i>	[2 marks]
(d)	Is the string <i>abba</i> accepted by M?	[3 marks]

A description of an automatic telephone answering machine is shown in Table 3. When a call arrives, the phone rings. If the phone is not picked up, then on the third ring, the machine answers. It plays a pre-recorded greeting requesting that the caller leave a message, then records the caller's message, and then automatically hangs up. If the phone is answered before the third ring, the machine does nothing.

States		Input		Output		
q_o	idle (nothing is	<i>i</i> 1	incoming ringing	0	default output when there is	
	happening)		signal		nothing interesting to say	
q_1	one ring has arrived	i_2	a telephone is picked	1	answer the phone and start the	
			up		greeting message	
q_2	two rings have	i3	greeting message is	2	start recording the incoming	
	arrived		finish playing		message	
q_3	playing the greeting	i_4	end of message	3	recorded an incoming message	
	message		detected			
q_4	recording the	i 5	no input of interest			
	message					

i) Construct a state transition table by completing Table 4.

[7 marks]

Table 4

	f_s					f_o				
	i_1	i_2	i3	i_4	i_5	i_1	i_2	i_3	i_4	i_5
q_0	q_1					0				
q_1										
q_2										
<i>q</i> ₃										
q_4										

ii) Based on answer in (i), construct a state transition diagram for the telephone answering machine.[3 marks]

i) Consider the following encoding function $f: B^2 \to B^6$ defined by

f(00) = 000000f(01) = 010110f(10) = 100101f(11) = 110001

(a) What is the minimum distance of the code? [7 marks]

(b) Find the error detection capability of this code. [2 marks]

ii) Consider a (3,6) code with Boolean matrix,
$$H = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Determine

- (a) f_{H} (010) [2 marks] (b) f_{H} (111) [2 marks]
- iii) Given the (2,4) group encoding function $f: B^2 \to B^4$ defined by

$$f(00) = 0000$$

$$f(01) = 0111$$

$$f(10) = 1001$$

$$f(11) = 1111$$

Decode word 1101 based on the maximum likelihood decoding function. [12 marks]