SULIT

UNIVERSITI PENYELIDIKAN FINAL EXAMINATION SEMESTER I 2011/2012

SUBJECT CODE	$:$	SCI 1013
SUBJECT NAME	$:$	DISCRETE STRUCTURE
YEAR/COURSE	$:$	1 SCJ/V/R/D/B/
TIME	$:$	
DATE	$:$	
VENUE	$:$	

INSTRUCTION:

PLEASE ANSWER ALL QUESTIONS
(Please write down the lecturer's name and section in the answer booklet)

Name	
IC No / Metric Card No	
Year/Course	
Section	
Lecturer's Name	

a) Find the number of six-letter words that can be formed from the letters of the word COMPUTER if no letter is used more than once in any word subject to the condition below.
i) The first letter of each word is either C or R
ii) The word starts with COM
iii) The word starts with P and ends with E
iv) The word contains COM^{4} an a crubatrina
b) In a computer club, there are 10 male members and 12 female members. How many ways can we form a committee of 7 members subject to the following conditions:
i) There must be exactly 3 males and 4 females
(1 marks)
ii) There must be exactly 4 males
iii) The committee must contain at least 2 females
iv) The committee must contain at least 4 males
a) Two fair dice are rolled and the outcome of each roll is recorded.
i) Let S be the sample space. Find $|S|$.
($1 / 2$ marks)
ii) Let E be the event that the first die shows a 2 and the second die shows an odd number. Find the event E and $P(E)$. ($2^{1} / 2$ marks)
iii) What is the probability of getting the sum of the numbers rolled is an even number?
b) Table 1 refer to a company that buys computers from three vendors and tracks the number of defective machines.

Table 1: Percent of purchased and defective

	Vendor		
	Acme	DotCom	Nuclear
Percent purchased	55	10	35
Percent defective	1	3	3

Let:
A denote the event "the computer was purchased from Acme"
D denote the event "the computer was purchased from DotCom"
N denote the event "the computer was purchased from Nuclear"
B denote the event "the computer was defective"

Find:
i) $\quad P(B)$
(2 marks)
ii) $P(A \mid B)$
(2 marks)
iii) $P(D \mid B)$
(2 marks)
iv) $P(N \mid B)$ (2 marks)

Question 3

Two graphs, G_{l} and G_{2}, are given in Figure 1 and Figure 2 as follows.

Figure 1: \boldsymbol{G}_{1}

Figure 2: \boldsymbol{G}_{2}
a) Construct the incidence matrix of G_{l}.
b) Verify whether G_{l} and G_{2} are isomorphic.
c) State whether TRUE or FALSE for the following questions.
i) $\quad G_{l}$ is a simple graph.
ii) $\quad G_{2}$ is a connected graph.
iii) $\quad G_{l}$ is a K_{6} regular graph.
iv) $\quad v_{1}$ and v_{5} are adjacent in G_{I}.
v) $\quad v_{2}$ and v_{4} are isolated in G_{2}.
vi) $\quad G_{2}$ is a sub-graph of G_{I}.
vii) G_{l} is a simple path.
viii) G_{2} is a simple cycle
ix) $\quad G_{l}$ has Eular cycle.
x) G_{2} has Hamiltonian path.
d) Find the shortest path from v_{1} to v_{6} of G_{2} using Dijkstra's shortest algorithm. (5 marks)
a) Show the the following boolean expressions α and β are equal

$$
\alpha=x_{1}+x_{2} \bullet x^{\prime}{ }_{2}+x_{3} \quad \beta=x_{1}+x_{3}
$$

b) Find the minimized sum-of-product Boolean expression corresponding to the K-maps in 3(i) and 3(ii).
i)

xy	$x y^{\prime}$	$x^{\prime} y^{\prime}$	$x^{\prime} y$
	1	1	
$z^{\prime} \quad 1$	1		1

ii)

$x y$	$x y^{\prime}$	$x^{\prime} y$	x 'y
z			
1	1	1	1
z^{\prime} 1			1

c) With the help of input-ouput table, determine if the pairs of circuits are equivalent.
i)

ii)

d) Construct the circuit by using NOT, OR and AND gates corresponding to each of the given Boolean expressions
i) $x y^{\prime}+\left(x^{\prime}+y\right) y$
(2 marks)
ii) $x y+(x+y)^{\prime} y$
(2 marks)
a) Let $M=\left(Q, I, q_{0}, \delta, \sigma\right)$ be the Deterministic Finite Automaton (DFA) with state transition diagram shown in Figure 3.

Figure 3: Deterministic Finite Automaton M
i) Find the initial state, set of input symbols and set of final states.
($1^{11 / 2}$ marks)
ii) Write the transition table for this DFA.
iii) Determine the state that the machine ends for the input string 0101011.
iv) Is the input string 1101 accepted by the DFA?
b) Let $A=(S, I, O, A, f, g)$ be a finite state machine (FSM) defined by the transition table shown in Table 2.

Table 2: Transition table of FSM A

	f			g		
State	x	y	z	x	y	z
A	A	B	C	0	1	0
B	B	B	A	1	1	1
C	C	B	A	1	0	0

i) Draw the transition diagram of the finite state machine A.
(2 marks)
ii) Find the output string for the input string $x y x z x$.
iii) Find the output generated from the input string $z x y x z$.
iv) Determine whether the input string $z x y x z$ is accepted by the FSM?
c) Construct a deterministic finite automata $\left.\left.M=\left\{\left(s_{0}, s_{1}, s_{2}\right),(0,1), s_{0}, f_{s}, s_{2}\right)\right)\right\}$, that recognize the set of bit strings that end with two 0s by using the transition diagram in Figure 4 as the starting point.

Figure 4: Transition diagram

Question 6

[20 Marks]
a) Consider the (3,7) encoding function $f: B^{3} \rightarrow B^{7}$ which is given by

$$
\begin{aligned}
& f(000)=0000000 \\
& f(001)=0010110 \\
& f(010)=0101000 \\
& f(011)=0111110 \\
& f(100)=1000101 \\
& f(101)=1010011 \\
& f(110)=1101101 \\
& f(111)=1111011
\end{aligned}
$$

i) Find the weight of the above encoding function.
ii) Find the minimum distance.
iii) How many errors can f detect?
b) Let H be a parity check matrix. Determine the $(3,6)$ group code $f_{H}: B^{3} \rightarrow B^{6}$. (4 marks)

$$
H=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

c) Consider the $(3,5)$ group encoding function $f: B^{3} \rightarrow B^{5}$ defined by

$$
\begin{aligned}
& f(000)=00000 \\
& f(001)=00110 \\
& f(010)=01001 \\
& f(011)=01111 \\
& f(100)=10011 \\
& f(101)=10101 \\
& f(110)=11010 \\
& f(111)=11100
\end{aligned}
$$

Decode the word 11011 relative to a maximum likelihood decoding function. (6 marks)

