QUESTION 1 20 MARKS

a). An eight-person committee composed of A, B, C, D, E, F, G and H is to select a chairperson, vice of chairperson, secretary, and treasurer

- i) In how many ways can this selection be done? (2 Marks)
- ii) In how many ways can this be done if either A, B or C must be chairperson? (2Marks)
- iii) In how many ways can this be done if D must hold one of the committee? (3 Marks)
- iv) In how many ways can this be done if F and G must hold office? (3 Marks)
- b). A committee of eight is to be made from 6 students and 10 lecturers. In how many ways can this be done?
 - i) If the committee contains exactly 4 students? (2 Marks)
 - ii) If the committee contains exactly 5 students? (2 Marks)
 - iii) If the committee contains at least 4 students? (3 Marks)
 - iv) If the committee contains at least 5 students? (3 Marks)

QUESTION 2 10 MARKS

- c). Let H and T be the head and tail of a coin.

 The coin is tossed 4 times and the result is recorded after each toss.
 - i) List all possible outcomes in the sample space. (2 Marks)
 - ii) Find the event E_1 that contains only the outcomes in which 2 tails appears. (2 Marks)
 - Find the event E that contains only the outcomes in which 3 heads appears. (2 Marks)

iv) Suppose that the probability of P(HHHH)=2 P(HHHT) and P(TTTT)=3(PHHHT) and probability of the other outcomes are equal to P(HHHT). Find the probability of the all possible outcomes in the sample space.

(2 Marks)

v) Find Probability of the E_1 .

(1 Mark)

vi) Find Probability of the E_2 .

(1 Mark)

QUESTION 3

23 MARKS

a). Draw the graph (G) represented by the incidence matrix below:

- i) Is G is a simple graph?
- ii) What is the degree for each vertex in G
- iii) Determine whether G has an Euler cycle.

(9 marks)

b) Prove that the following two graphs in Figure 1 are isomorphic.

Figure 1 (8 marks)

c). Find the shortest path from a to z using Djikstra's algorithm.

Figure 2

QUESTION 4 12 Marks

a). Find the disjunctive normal form and draw the combinatorial circuit corresponding to the disjunctive normal form. (Simplified your answer) (6 marks)

X	у	Z	F(x,y,z)
1	1	1	1
1	1	0	1
1	0	1	0
1	0	0	1
0	1	1	1
0	1	0	1
0	0	1	0
0	0	0	0

b). Use Karnaugh maps to simplify the Boolean expression (6 marks)

i)
$$WXY + WXZ' + WY'Z + X'Y'Z$$

$$\dot{ii}$$
) $X'Y'Z + X'YZ + XY'Z'$

iii)
$$WXY + WXZ + WY'Z' + Y'Z'$$

QUESTION 5 15 MARKS

a) Let M=(S, I, q_0 , f_s , F) be the deterministic finite automaton (DFA) such that S={ q_0 , q_1 , q_2 , q_3 }, I={a, b, c}, F={ q_2 , q_3 }, q_0 is the initial state, and f_s is defined as follows:

$$\begin{array}{lll} f_s(q_0,\,a)=q_0, & f_s(q_0,\,b)=q_1, & f_s(q_0,\,c)=q_1,\\ f_s(q_1,\,a)=q_0, & f_s(q_1,\,b)=q_2, & f_s(q_1,\,c)=q_3,\\ f_s(q_2,\,a)=q_2, & f_s(q_2,\,b)=q_1, & f_s(q_2,\,c)=q_3,\\ f_s(q_3,\,a)=q_0, & f_s(q_3,\,b)=q_0, & f_s(q_3,\,c)=q_0, \end{array}$$

- i. Draw the state diagram of M.
- ii. Which of the strings abc, bac, and acb are accepted by M?

b) Let $M=(S, I, O, q_0, f_s, f_o)$ be a finite state machine (FSM). The transition diagram of M is shown in Figure 3.

Figure 3

- i. Write the transition table of M.
- ii. What is the output string if the input string is aabb?
- iii. What is the output if the input string is baba?
- iv. Is the string abba accepted by M?

(5 marks)

c) Design a finite state machine (FSM) that accepts all strings over $\{a, b\}$ that contain at least two a's.

(4 marks)

20 MARKS

QUESTION 6

a) Consider the (2,6) encoding function f: $B^2 \rightarrow B^6$.

f(00) = 000000

f(01) = 010101

f(10) = 101010

f(11) = 111111

- i. Show that f is a group code.
- ii. Find the minimum distance.
- iii. How many errors will f detect?

b) Let

$$H = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

be a parity check matrix. Determine the (3,6) group code $f_H: B^3 \to B^6$.

(8 marks)

c) Consider the (3, 5) group encoding function f: $B^3 \rightarrow B^5$ defined by

$$f(000) = 00000$$

$$f(001) = 00101$$

$$f(010) = 01010$$

$$f(011) = 01101$$

$$f(100) = 10001$$

$$f(101) = 10100$$

$$f(101) = 10100$$

 $f(110) = 11011$

$$f(111) = 11111$$

Decode the following words relative to a maximum likelihood decoding function.

- i. 10011
- ii. 11101
- iii. 01000