Exercise 8b.3: Design 2-bit synchronous counter that using D flip-flop. Show all steps clearly.

Exercise 8b.5: Design 3-bit synchronous counter that using T flip-flop. Show all steps clearly.

Exercise 8b.6: Design 4-bit synchronous counter that using J-K flip-flop with negative edge triggered. Show all steps clearly.

Exercise 8b.7: Design 3-bit synchronous counter that using J-K flip-flop based on the state diagram below. Show all steps clearly.

Exercise 8b.11: Design a counter with the irregular binary count sequence shown in the state diagram below using JK FF.

Exercise 8b.12: Design a synchronous counter with the irregular binary count sequence shown in the state diagram below using J-K FF.

K-maps: Exercise 8b.12:

$\mathrm{XQ}_{2} Z^{Q_{1} Q_{0}}$	00	01	11	10
00	0	X	1	X
01	X	X	X	X
11	X	X	X	X
10	1	X	0	X

$\mathrm{Q}_{1} \mathrm{Q}_{0}$				
00	1	X	X	X
01	0	1	X	X
11	1	1	X	X
10	1	X	X	X

, $\mathrm{Q}_{1} \mathrm{Q}_{0}$				
00	1	X	X	X
01	0	X	X	X
11	1	X	X	X
10	(1	X	X	X

$J_{2}=X \bar{Q}_{1}+\bar{X} Q_{1}$

$$
\underset{\mathrm{Q}_{1} \mathrm{Q}_{0}}{J_{1}}=X+\bar{Q}_{2}+Q_{0}
$$

$\mathrm{Q}_{1} \mathrm{Q}_{0} J_{2}=X \bar{Q}_{1}+\bar{X} Q_{1}$					$\mathrm{Q}_{1} \mathrm{Q}_{0} J_{1}=X+\bar{Q}_{2}+Q_{0}$				
00 01 11 10 $X Q_{2}$ 10									
00	X	X	X	X	00	X	X	1	X
01	0	0	1	X	01	X	X	1	X
11	1	1	0	X	11	x	X	1	X
10	X	X	X	X	10	X	X	0	X
$K_{2}=X \bar{Q}_{1}+\bar{X} Q_{1}$						$K_{1}=X+Q_{2}$			

$$
\mathrm{Q}_{1} \mathrm{Q}_{0} \quad J_{0}=X+\bar{Q}_{2}
$$

$$
K_{2}=X \bar{Q}_{1}+\bar{X} Q_{1}
$$

Exercise 8b.13: Two type of counters, modulus-4 and modulus-8 need to be used to achieve count up to modulus-n (n CLK).
a) How to cascade the counters to achieve count until 32 CLK (modulus-32)?
b) What is the frequency produced by each counter given an initial frequency as 800 MHz ?

Exercise 8b.15: Analysis for the following sequential circuit. Use Method 1. Get state diagram for the sequential

Exercise 8b.16:
Analysis for the following sequential circuit. Use Method 2. Get state diagram for the sequential circuit.

