

www.utm.my

Exercise 8a.2: A 2-bit count down ripple counter is designed using J-K flip-flop with negative edge triggered clock.

- a) Draw the connection of logic symbol.
- b) Draw the waveform outputs for 4 clock cycles.
- c) Construct a state table for the counter.
- d) Draw the state diagram the the counter.

Solution 8a.2: a) Draw the connection of logic symbol.

b) Draw the waveform outputs for 4 clock cycles.

c) Construct a state table for the counter.

TX	
70	
•	

Clock Pulse	Q_1	Q_0
Initial	0	0
1	1	1
2	1	0
3	0	1
4	0	0

d) Draw the state diagram the the counter.

www.utm.my

Exercise 8a.3: A 3-bit count down ripple counter is designed using J-K flip-flop with negative edge triggered clock.

- a) Draw the connection of logic symbol.
- b) Draw the waveform outputs for 8 clock cycles.
- c) Construct a state table for the counter.
- d) Draw the state diagram the the counter.

Etxra

www.utm.my

Solution 8a.3: a) Draw the connection of logic symbol.

CLK	1	2	3	4	5	6	7	8	
Q_0									
\overline{Q}_0									
Q_1									
$\overline{Q_1}$									
Q_2									

b) Draw the waveform outputs for 8 clock cycles.

c) Construct a state table for the counter.

Clock Pulse	Q_2	Q_1	Q_0
Initial	0	0	0
1	1	1	1
2	1	1	0
3	1	0	1
4	1	0	0
5	0	1	1
6	0	1	0
7	0	0	1
8	0	0	0

d) Draw the state diagram the counter

www.utm.my

Exercise 8a.4: A 4-bit count down ripple counter is designed using J-K flip-flop with positive edge triggered clock.

- a) Draw the connection of logic symbol.
- b) Draw the waveform outputs for 8 clock cycles.
- c) Construct a state table for the counter.
- d) Draw the state diagram the the counter.