
05: ARRAY

Programming Technique I

(SCSJ1013)

Array
Contents:

• Introduction

• Array Declaration

• Memory Layout

• Terminology

• Accessing Array Elements

• Array Initialization

• Processing Array Contents

• Array Assignment

• Arrays as Function Arguments

• Two-Dimensional Arrays

• Array of Strings

Introduction

• Array: variable that can store a collection of
data of the same type

– Examples: A list of names, A list of temperatures

• Why do we need arrays?

– Imagine keeping track of 5 test scores, or 100, or
1000 in memory

• How would you name all the variables?

• How would you process each of the variables?

Declaring an Array

• An array, named test, containing five
variables of type int can be declared as

int tests[5];

• The value in brackets is called

– A subscript

– An index

Array - Memory Layout

• The definition:

int tests[5];

allocates the following memory:

first
element

second
element

third
element

fourth
element

fifth
element

Array Terminology

In the definition int tests[5];

• int is the data type of the array elements

• tests is the name of the array

• 5, in [5], is the size declarator. It shows
the number of elements in the array.

• The size of an array is (number of elements) *
(size of each element)

Array Terminology

• The size of an array is:
– the total number of bytes allocated for it

– (number of elements) * (number of bytes for each
element)

• Examples:
int tests[5] is an array of 20 bytes, assuming 4
bytes for an int

long double measures[10]is an array of 80
bytes, assuming 8 bytes for a long double

Size Declarators

• Named constants are commonly used as size
declarators.
const int SIZE = 5;

int tests[SIZE];

• This eases program maintenance when the
size of the array needs to be changed.

Accessing Array Elements

• Each element in an array is assigned a unique
subscript.

• Subscripts start at 0

0 1 2 3 4

subscripts:

Accessing Array Elements

• The last element’s subscript is n-1 where n is
the number of elements in the array.

0 1 2 3 4

subscripts:

Accessing Array Elements

• Array elements can be used as regular variables:
tests[0] = 79;

cout << tests[0];

cin >> tests[1];

tests[4] = tests[0] + tests[1];

• Arrays must be accessed via individual elements:
cout << tests; // not legal

(Program Continues)

Accessing Array Elements - example

Here are the contents of the hours array, with the values
entered by the user in the example output:

Accessing Array Elements - example

Accessing Array Contents

• Can access element with a constant or literal
subscript:

cout << tests[3] << endl;

• Can use integer expression as subscript:

int i = 5;

cout << tests[i] << endl;

Using a Loop to Step Through
an Array

Example – The following code defines an array,
numbers, and assigns 99 to each element:

const int ARRAY_SIZE = 5;

int numbers[ARRAY_SIZE];

for (int count = 0; count < ARRAY_SIZE; count++)

numbers[count] = 99;

A Closer Look At the Loop

Default Initialization

• Global array all elements initialized to 0 by
default

• Local array all elements uninitialized by
default

In-class Exercise

• Exercise (3) : Pg. 259

• Exercise (34 : Pg. 259 - pg. 260

Exercise 9.10

No Bounds Checking in C++

• When you use a value as an array subscript,
C++ does not check it to make sure it is a valid
subscript.

• In other words, you can use subscripts that
are beyond the bounds of the array.

Example

• The following code defines a three-element
array, and then writes five values to it!

What the Code Does

No Bounds Checking in C++

• Be careful not to use invalid subscripts.

• Doing so can corrupt other memory locations,
crash program, or lock up computer, and
cause elusive bugs.

Array Initialization

• Arrays can be initialized with an initialization
list:

const int SIZE = 5;

int tests[SIZE] = {79,82,91,77,84};

• The values are stored in the array in the
order in which they appear in the list.

• The initialization list cannot exceed the array
size.

Example

Array Initialization

• Valid
int tests[3] = { 3, 5, 11 };

• Invalid

int tests[3];

tests= { 3, 5, 11 };

Partial Array Initialization

• If array is initialized with fewer initial values
than the size declarator, the remaining
elements will be set to 0:

Implicit Array Sizing

• Can determine array size by the size of the
initialization list:

int quizzes[]={12,17,15,11};

• Must use either array size declarator or
initialization list at array definition

12 17 15 11

Initializing With a String

• Character array can be initialized by enclosing
string in " ":
const int SIZE = 6;

char fName[SIZE] = "Henry";

• Must leave room for \0 at end of array

• If initializing character-by-character, must add
in \0 explicitly:

char fName[SIZE] =

{ 'H', 'e', 'n', 'r', 'y', '\0'};

In-Class Exercise

• Are each of the following valid or invalid array
definitions? (If a definition is invalid, explain why)
int numbers[l0] = {0, 0, 1, 0, 0, 1, 0, 0, 1, 1};

int matrix[5] = {1, 2, 3, 4, 5, 6, 7};

double radix[10] = {3.2, 4.7};

int table[7] = {2, , , 27, , 45, 39};

char codes [] = {‘A', 'X', '1', '2', 's'};

int blanks[];

char name[6] = "Joanne";

• Exercise (2), pg. 259

Processing Array Contents

• Array elements can be treated as ordinary
variables of the same type as the array

• When using ++, -- operators, don’t confuse
the element with the subscript:
tests[i]++; // add 1 to tests[i]

tests[i++]; // increment i, no

// effect on tests

Array Assignment

To copy one array to another,

• Don’t try to assign one array to the other:

newTests = tests; // Won't work

• Instead, assign element-by-element:

for (i = 0; i < ARRAY_SIZE; i++)

newTests[i] = tests[i];

Printing the Contents of an Array

• You can display the contents of a character
array by sending its name to cout:

char fName[] = "Henry";

cout << fName << endl;

But, this ONLY works with character arrays!

Printing the Contents of an Array

• For other types of arrays, you must print
element-by-element:

for (i = 0; i < ARRAY_SIZE; i++)

cout << tests[i] << endl;

Summing and Averaging Array
Elements

• Use a simple loop to add together array
elements:
int tnum;

double average, sum = 0;

for(tnum = 0; tnum < SIZE; tnum++)

sum += tests[tnum];

• Once summed, can compute average:
average = sum / SIZE;

Finding the Highest Value in an Array

int count;

int highest;

highest = numbers[0];

for (count = 1; count < SIZE; count++)

{

if (numbers[count] > highest)

highest = numbers[count];

}

When this code is finished, the highest variable will contain the
highest value in the numbers array.

Finding the Lowest Value in an Array

int count;

int lowest;

lowest = numbers[0];

for (count = 1; count < SIZE; count++)

{

if (numbers[count] < lowest)

lowest = numbers[count];

}

When this code is finished, the lowest variable will contain the
lowest value in the numbers array.

Partially-Filled Arrays

• If it is unknown how much data an array
will be holding:

–Make the array large enough to hold the
largest expected number of elements.

–Use a counter variable to keep track of the
number of items stored in the array.

Comparing Arrays
• To compare two arrays, you must compare

element-by-element:
const int SIZE = 5;

int firstArray[SIZE] = { 5, 10, 15, 20, 25 };

int secondArray[SIZE] = { 5, 10, 15, 20, 25 };

bool arraysEqual = true; // Flag variable

int count = 0; // Loop counter variable

// Compare the two arrays.

while (arraysEqual && count < SIZE)

{

if (firstArray[count] != secondArray[count])

arraysEqual = false;

count++;

}

if (arraysEqual)

cout << "The arrays are equal.\n";

else

cout << "The arrays are not equal.\n";

In-Class Exercise

Given the following array definition:

int values[] = {2,6,10,14};

What does each of the following display?

a) cout<<values[2];

b) cout<<++values[0];

c) cout<< values[1]++;

d) x = 2;

cout<<values[++x];

In-Class Exercise

• Exercise No. (3) pg. 259

• Declare an integer array named names with
20 elements. Write a loop that prints each
element of the array.

In-Class Exercise

• Write a program that lets the user enter 10 values into an
array. The program should then display the largest and
smallest values stored in the array.

• Write a program that lets the user enter the total rainfall
for each of 12 months into an array of doubles. The
program should then calculate and display the total rainfall
for the year, the average monthly rainfall, and the months
with the highest and lowest amounts.

Input Validation: Do not accept negative numbers for
monthly rainfall figures.

Using Parallel Arrays

• Parallel arrays: two or more arrays that
contain related data

• A subscript is used to relate arrays: elements
at same subscript are related

• Arrays may be of different types

Parallel Array Example

const int SIZE = 5; // Array size

int id[SIZE]; // student ID

double average[SIZE]; // course average

char grade[SIZE]; // course grade

...

for(int i = 0; i < SIZE; i++)
{

cout << "Student ID: " << id[i]

<< " average: " << average[i]

<< " grade: " << grade[i]

<< endl;
}

(Program Continues)

Parallel Array Example

Program 7-12 (Continued)

Parallel Array Example

The hours and payRate arrays are related through their
subscripts:

Parallel Array Example

In-Class Exercise

• What is the output of the following code?

(You may need to use a calculator.) .

const int SIZE = 5;

int time[SIZE] = {1, 2, 3, 4, 5},

speed[SIZE] = {18, 4, 27, 52, 100},

dist[SIZE];

for (int count = 0; count < SIZE; count++)

dist[count] = time[count] * speed[count];

for (int count = 0; count < SIZE; count++) {

cout << time[count] << " ";

cout << speed[count] << " ";

cout « dist[count] << endl;

}

In-Class Exercise

• Write a program that store the populations of
12 countries. Define 2 arrays that may be used
in parallel to store the names of the countries
and their populations. Write a loop that uses
these arrays to print each country’s name and
its population.

Arrays as Function Arguments

• To pass an array to a function, just use the array
name:
showScores(tests);

• To define a function that takes an array parameter,
use empty [] for array argument:
void showScores(int []); // function prototype

void showScores(int tests[])// function header

Arrays as Function Arguments

• When passing an array to a function, it is common
to pass array size so that function knows how
many elements to process:
showScores(tests, ARRAY_SIZE);

• Array size must also be reflected in prototype,
header:
void showScores(int [], int);

// function prototype

void showScores(int tests[], int size)

// function header

(Program Continues)

Arrays as Function Arguments - example

Program 7-14 (Continued)
Arrays as Function Arguments - example

Modifying Arrays in Functions

• Array names in functions are like reference
variables – changes made to array in a function
are reflected in actual array in calling function

• Need to exercise caution that array is not
inadvertently changed by a function

In-Class Exercise
• The following program skeleton, when completed, will ask the

user to enter 10 integers which are stored in an array. The
function avgArray, which you must write, is to calculate and
return the average of the numbers entered.

#include <iostream>

//Write your function prototype here

int main() {

const int SIZE = 10;

int userNums[SIZE];

cout << "Enter 10 numbers: ";

for (int count = 0; count < SIZE; count++){

cout << "#" « (count + 1) << " ";

cin >> userNums[count];

}

cout << "The average of those numbers is ";

cout << avgArray(userNUms, SIZE) << endl;

return 0;

}

//Write the function avgArray here.

In-Class Exercise
#include <iostream>

using namespace std;

void Test(int []);

int main()

{

int myArr [4]={3,4,5,6};

for(int i=0;i<4;i++)

cout<<myArr[i]<<" ";

cout<<endl;

Test(myArr);

cout<<endl;

for(int i=0;i<4;i++)

cout<<myArr[i]<<" ";

system("pause");

return 0;}

void Test(int z[])

{

int temp=z[3];

z[3]=z[0];

z[0]=temp;

for(int
j=0;j<4;j++)

cout<<z[j]<<" ";

}

In-Class Exercise

#include <iostream>

using namespace std;

void Test(int , int,int[]);

int main()

{ int x = 1;

int y[3];

y[0]=1;

Test(x,y[0],y);

cout<<"x is: " << x<< endl;

cout<<"y[0] is: " <<y[0] <<
endl;

for(int i=0;i<3;i++)

cout<<y[i]<<endl;

system("pause");

return 0;}

void Test(int num, int num1,
int z[])

{

num=1001;

num1=290;

z[1]=34;

z[2]=35;

}

In-Class Exercise

Each of the following definitions and program
segments has errors. Locate as many as you can and
correct the errors.

a) void showValues(int nums)

{

for(int i = 0; i<8; i++)

cout<<nums[i];

}

b) void showValues(int nums [4])

{

for(int i = 0; i<8; i++)

cout<<nums[i];

}

In-Class Exercise

• Consider the following function prototypes:

void funcOne(int [], int);

int findSum(int, int);

And the declarations:

int list[50];

int num;

Write a C++ statements that:

a) Call the function funcOne with the actual parameters, list and
50 respectively.

b) Print the value returned by the function funcSum with the actual
parameters, 50, and the fourth element of list respectively.

c) Print the value returned by the function funcSum with the actual
parameters, the thirtieth and tenth elements of list, respectively.

In-Class Exercise
• Write a program that has two overloaded

functions that return the average of an array
with the following headers:

int average(int array[], int size)

double average(int array[], int size

Use {1,2,3,4,5,6} and

{6.0,4.4,1.9,2.9,3.4,3.5} to test the functions.

In-Class Exercise

• Write a program that has a function that returns
the index of the smallest element in an array of
integers. If there are more than one such
elements, return the smallest index. Use
{1,2,4,5,10,100,2,-22} to test the
function.

Two-Dimensional Arrays

• Can define one array for multiple sets of
data

• Like a table in a spreadsheet

• Use two size declarators in definition:

const int ROWS = 4, COLS = 3;

int exams[ROWS][COLS];

• First declarator is number of rows; second
is number of columns

Two-Dimensional Array Representation

const int ROWS = 4, COLS = 3;

int exams[ROWS][COLS];

• Use two subscripts to access element:
exams[2][2] = 86;

exams[0][0] exams[0][1] exams[0][2]

exams[1][0] exams[1][1] exams[1][2]

exams[2][0] exams[2][1] exams[2][2]

exams[3][0] exams[3][1] exams[3][2]

columns

r
o
w
s

Two-Dimensional Array Representation - Example

Two-Dimensional Array Representation - Example

Two-Dimensional Array Representation - Example

2D Array Initialization

• Two-dimensional arrays are initialized row-by-
row:
const int ROWS = 2, COLS = 2;

int exams[ROWS][COLS] = { {84, 78},

{92, 97} };

• Can omit inner { }, some initial values in a row
– array elements without initial values will be set
to 0 or NULL

84 78

92 97

Two-Dimensional Array as Parameter,
Argument

• Use array name as argument in function call:

getExams(exams, 2);

• Use empty [] for row, size declarator for column in
prototype, header:
const int COLS = 2;

// Prototype

void getExams(int [][COLS], int);

// Header

void getExams(int exams[][COLS], int rows)

Example – The showArray Function
from Program 7-19

How showArray is Called

Summing All the Elements in a Two-
Dimensional Array

Given the following definitions:

const int NUM_ROWS = 5; // Number of rows

const int NUM_COLS = 5; // Number of columns

int total = 0; // Accumulator

int numbers[NUM_ROWS][NUM_COLS] =

{{2, 7, 9, 6, 4},

{6, 1, 8, 9, 4},

{4, 3, 7, 2, 9},

{9, 9, 0, 3, 1},

{6, 2, 7, 4, 1}};

Summing All the Elements in a
Two-Dimensional Array

// Sum the array elements.

for (int row = 0; row < NUM_ROWS; row++)

{

for (int col = 0; col < NUM_COLS; col++)

total += numbers[row][col];

}

// Display the sum.

cout << "The total is " << total << endl;

Summing the Rows of a Two-
Dimensional Array

Given the following definitions:

const int NUM_STUDENTS = 3;

const int NUM_SCORES = 5;

double total; // Accumulator

double average; // To hold average scores

double scores[NUM_STUDENTS][NUM_SCORES] =

{{88, 97, 79, 86, 94},

{86, 91, 78, 79, 84},

{82, 73, 77, 82, 89}};

Summing the Rows of a Two-
Dimensional Array

// Get each student's average score.

for (int row = 0; row < NUM_STUDENTS; row++)

{

// Set the accumulator.

total = 0;

// Sum a row.

for (int col = 0; col < NUM_SCORES; col++)

total += scores[row][col];

// Get the average

average = total / NUM_SCORES;

// Display the average.

cout << "Score average for student "

<< (row + 1) << " is " << average <<endl;

}

Summing the Columns of a Two-
Dimensional Array

Given the following definitions:

const int NUM_STUDENTS = 3;

const int NUM_SCORES = 5;

double total; // Accumulator

double average; // To hold average scores

double scores[NUM_STUDENTS][NUM_SCORES] =

{{88, 97, 79, 86, 94},

{86, 91, 78, 79, 84},

{82, 73, 77, 82, 89}};

Summing the Columns of a Two-
Dimensional Array

// Get the class average for each score.

for (int col = 0; col < NUM_SCORES; col++)

{

// Reset the accumulator.

total = 0;

// Sum a column

for (int row = 0; row < NUM_STUDENTS; row++)

total += scores[row][col];

// Get the average

average = total / NUM_STUDENTS;

// Display the class average.

cout << "Class average for test " << (col + 1)

<< " is " << average << endl;

}

Array of Strings

• Use a two-dimensional array of characters as an
array of strings:
const int NAMES = 3, SIZE = 10;

char students[NAMES][SIZE] =

{ "Ann", "Bill", "Cindy" };

• Each row contains one string

• Can use row subscript to reference the string in a
particular row:
cout << students[i];

Array of Strings - example

Array of Strings

Arrays with Three or More
Dimensions

• Can define arrays with any number of
dimensions:

short rectSolid[2][3][5];

double timeGrid[3][4][3][4];

• When used as parameter, specify all except 1st

dimension in prototype, heading:

void getRectSolid(short [][3][5]);

In-Class Exercise

• Define a two-dimensional array of int named grades. It
should have 30 rows and 10 columns.

• How many elements are in the following array?

double sales[6][5];

In-Class Exercise

• Define an array of strings to store the name of your friends in
this class.

• Initialize the array with 5 names.

• Print the names.

• Write a function to change the names in the array.

void changeName(char [][25], int size);

In-Class Exercise

• Consider the following declarations:
const int CAR_TYPES = 5;

const int COLOR_TYPES = 6;

double sales[CAR_TYPES][COLOR_TYPES];

a) How many elements does the array sales have?

b) What is the number of rows in the array sales?

c) What is the number of columns in the array sales?

d) Write a complete code to sum the sales by CAR_TYPES.

e) Write a complete code to sum the sales by
COLOR_TYPES.

• Write a complete program that stores the following number of medal
collection for 5 countries into the 2-D array called medals.

• Your program must have the following functions that do the
following:

– Read the number of medal for each country from a keyboard and
store them inside the medals array.

– Return total number of medals won by country 3.

– Return the largest number of medals won.

– Return the smallest number of medals won.

– Return the highest number of gold medal won.

– Return the total number of bronze medal won.

Gold Silver Bronze

Country 1 129 257 590

Country 2 120 279 394

Country 3 115 290 123

Country 4 98 209 112

